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Foreword

HE tremendous research and development effort that went into the

development of radar and related techniques during World War 11
resulted not only in hundreds of radar sets for military (and some for
possible peacetime) use but also in a great body of information and new
techniques in the electronics and high-frequency fields. Because this
basic material may be of great value to science and engineering, it seemed
most important to publish it as soon as security permitted.

The Radiation Laboratory of MIT, which operated under the super-
vision of the National Defense Research Committee, undertook the great
task of preparing these volumes. The work described herein, however, is
the collective result of work done at many laboratories, Army, Navy,
university, and industrial, both in this country and in England, Canada,
and other Dominions.

The Radiation Laboratory, once its proposals were approved and
finances provided by the Office of Scientific Research and Development,
chose Louis N. Ridenour as Editor-in-Chief to lead and direct the entire
project. An editorial staff was then selected of those best qualified for
this type of task. Finally the authors for the various volumes or chapters
or sections were chosen from among those experts who were intimately
familiar with the various fields, and who were able and willing to write
the summaries of them. This entire staff agreed to remain at work at
MIT for six months or more after the work of the Radiation Laboratory
was complete. These volumes stand as a monument to this group.

These volumes serve as a memorial to the unnamed hundreds and
thousands of other scientists, engineecrs, and others who actually carried
on the research, development, and engineering work the results of which
are herein described. There were so many involved in this work and they
worked so closely together even though often in widely separated labora-
tories that it is impossible to name or even to know those who contributed
to a particular idea or development. Only certain ones who wrote reports

Joor articles have even been mentioned. But to all those who contributed
.o_:f in any way to this great cooperative development enterprise, both in this

E® 20

country and in England, these volumes are dedicated.

L. A. DuBRrIDGE.







Preface

HE need that arose during the war for utilizing the microwave region
Tof the radio frequency spectrum for communications and radar stimu-
lated the development of new types of antennas. The problems and
design techniques, lying as they do in the domain of both applied electro-
magnetic theory and optics, are quite distinct from those of long-wave
antennas. It is the aim of the present volume to make available to the
antenna engineer a systematic treatment of the basic principles and the
fundamental microwave antenna types and techniques. The elements
of electromagnetic theory and physical optics that are needed as a basis
for design techniques are developed quite fully. Critical attention is
paid to the assumptions and approximations that are commonly made
in the theoretical developments to emphasize the domain of applicability
of the results. The subject of geometrical optics has been treated only
to the extent necessary to formulate its basic principles and to show its
relation as a short wavelength approximation to the more exact methods
of field theory. The brevity of treatment should not be taken as an
index of the relative importance of geometrical optics to that of electro-
magnetic theory and physical optics. It is in fact true that the former
is generally the starting point in the design of the optical elements
(reflectors and lenses) of an antenna. However, the use of ray theory
for microwave systems presents no new problems over those encountered
in optics—on which there are a number of excellent treatises—except
that perhaps the law of the optical path appears more prominently in
microwave applications.

In the original planning of the book it was the intention of the editors
to integrate all of the major wark done in this country and in Great
Britain and Canada. This proved, however, to be too ambitious an
undertaking. Many subjects have regrettably been omitted completely,
and others have had to be treated in a purely cursory manner. It was
unfortunately necessary to omit two chapters on rapid scanning antennas
prepared by Dr. C. V. Robinson. The time required to revise the
material to conform with the requirements of military security and yet
to represent an adequate exposition of the subject would have unduly
delayed the publication of the book. Certain sections of Dr. Robinson’s
material have been incorporated into Chaps. 6 and 12.

ix



X PREFACE

1 take pleasure in expressing here my appreciation to Prof. Hubert
M. James who, as Technical Editor, shared with me much of the
editorial work and the attendant responsibilities. The scope of the book,
the order of presentation of the material, and the sectional division within
chapters were arrived at by us jointly in consultation with the authors.
I am personally indebted to Professor James for his editorial work on
my own chapters.

The responsibility for the final form of the book, the errors of omission
and commission, is mine. A word of explanation to the authors of the
various chapters is in order. After the close of the Office of Publications
and the dispersal of the group, I have on occasions made use of my
editorial prerogative to revise their presentations. I hope that theresults
meet with their approval. The policy of assignment of credit also needs
explanation. The interpretation of both Professor James and myself of
the policy on credit assignment formulated by the Editorial Board for
the Technical Series has been to the effect that no piece of work discussed
in the text would be associated with an individual or individuals. Radi-
ation Laboratory reports are referred to in the sense that they represent
source material for the chapter rather than individual acknowledgements.
References to unpublished material of the Radiation Laboratory note-
books have been assiduously avoided, although such material has been
drawn upon extensively by all of us. In defense of this policy it may be
stated that the work at the Radiation Laboratory was truly a cooperative
effort, and in only a few instances would it have been possible to assign
individual credit unequivocally.

The completion of the book was made possible through the efforts of
a number of people; in behalf of the editorial staff and the authors I wish
to acknowledge their assistance and contributions. Mrs. Barbara Vogel
and Mrs. Ellen Fine of the Radiation Laboratory served as technical
assistants; the production of figures and photographs was expedited by
Mrs. Frances Bourget and Mrs. Mary Sheats. It proved impossible to
finish the work by the closing date of the Office of Publications; the Naval
Research Laboratory accepted the work as one of the projects of the
newly formed Antenna Research Section and contributed generously in
personnel and facilities. Special thanks are due to A. S. Dunbar,
1. Katz, and Dr. I. Maddaus for their editorial assistance; to Queenie
Parigian and Louise Beltramini for preparation of the manuseript;
and to Betty Hodgkins who prepared almost all of the figures.
The editors are indebted to Dr. G. G. Macfarlane of the Tele-
communications Research Establishment, Great Britain, for his
critical review of several of the theoretical chapters and his contribution
on the theory of slot radiators in Chap. 9. John Powell of the
Radiation Laboratory prepared material on lenses that was used in
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Chap. 11.  The Nationual Rescarch Council of Canada and the British
Central Radio Bureau have graciously granted us permission to take
material from Canadian and British reports in accordance with current
security regulations. The Bell Telephone ILaboratory supplied the
photographs of metal lens antennas.

SAMULL SILVER.
NavanL Ressancn LaBorarory,
Wasiinaros, D, ()
April, 1947
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CHAPTER 1
SURVEY OF MICROWAVE ANTENNA DESIGN PROBLEMS

By S. Siver

1.1. The Wavelength Region.—The designation of the boundaries of
the microwave region of the electromagnetic spectrum is purely arbitrary.
The long-wavelength limit has been set variously at 25 or 40 em, even
at 100 em. From the point of view of antenna theory and design tech-
niques, the 25-cm value is the most appropriate choice. The short-
wavelength limit to which it is possible to extend the present techniques
has not yet been reached; it isin the neighborhood of 1 mm.  Accordingly
we shall consider the microwave region to extend in wavelength from 0.1
to 25 em, in frequency from 3 X 10° to 1200 Me/sec.

This is the transition region between the ordinary radio region, in
which the wavelength is very large compared with the dimenstons of all
the components of the system (except perhaps for the large and cumber-
some antennas), and the optical region, in which the wavelengths are
excessively small. Long-wave concepts and techniques continue to be
useful in the microwave region, and at the same time certain devices
used in the optical region such as lenses and mirrors are employed. From
the point of view of the antenna designer the most important character-
istic of this frequency region is that the wavelengths are of the order of
magnitude of the dimensions of conventional and easily handled mechan-
ical devices. This leads to radical modification of earlier antenna
techniques and to the appearance of new and striking possibilities,
especially in the construction and use of complex antenna structures.

It follows from elementary diffraction theory that if 1 1s the maximum
dimension of an antenna-in a given plane and A the wavelength of the
radiation, then the minimum angle within which the radiation can be
concentrated in that plane is

6~ = (1

With mierowaves one can thus produce highly directive antennas such
as have no parallel in long-wave practice; if a given directivity is desired,
it can be obtained with a microwave antenna which is smaller than the
equivalent long-wave antenna. The ease with which these small antennas
can be installed and manipulated in a restricted space contributes greatly

to the potential uses of microwaves. In addition, the convenient size of
1
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microwave antenna elements and of the complete antenna structure makes
it feasible to construct and use antennas of elaborate structure for special
purposes; in particular, it is possible to introduce mechanical motions of
parts of the antenna with respect to other parts, with consequent rapid
motion of the antenna beam.

The microwave region is a transition region also as regards theoretical
methods. The techniques required range from lumped-constant circuit
theory, on the low-frequency side, through transmission-line theory, field
theory, and diffraction theory to geometrical optics, on the high-fre-
quency side. There is frequent need for using several of these theories
in parallel—combining field theory and transmission-line theory, sup-
plementing geometrical optics by diffraction theory, and so on. Optical
problems in the microwave antenna field are relatively complex, and
some are of quite novel character: For instance, the optics of a curved
two-dimensional domain finds practical application in the design of
rapid-scanning antennas.

1.2. Antenna Patterns.—Before undertaking a survey of the more
important types of mierowave antenna, it will be necessary to state
precisely the terms in which the performance of an antenna will be
described.

The Antenna as a Radiating Device: The Gain Function.—The field
set up by any radiating system can be divided into two components:
the induction field and the radiation field. The induction field is impor-
tant only in the immediate vicinity of the radiating system; the energy
associated with it pulsates back and forth between the radiator and
near-by space. At large distances the radiation field is dominant; it
represents a continual flow of energy directly outward from the radiator,
with a density that varies inversely with the square of the distance and,
in general, depends on the direction from the source.

In evaluating the performance of an antenna as a radiating system
one considers only the field at a large distance, where the induction field
can be neglected. The antenna is then treated as an effective point
source, radiating power that, per unit solid angle, is a function of diree-
tion only. The directive properties of an antenna are most conveniently
expressed in terms of the ‘““gain function” G(4,¢). ILet 6 and ¢ be respec-
tively the colatitude and azimuth angles in a set of polar coordinates
centered at the antenna. Let P(6,¢) be the power radiated per unit
solid angle in direction 8, ¢ and P, the total power radiated. The gain
function is defined as the ratio of the power radiated in a given direction
per unit solid angle to the average power radiated per unit solid angle:

P6.6),
P

¢

4

G(6,0) = (2)
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Thus G(8,¢) expresses the increase in power radiated in a given direction
by the antenna over that from an isotropic radiator emitting the same
total power; it is independent of the actual power level. The gain
function is conveniently visualized as the surface

r=G(6,¢) @)

distant from origin in each direction by an amount equal to the gain
function for that direction. Typical gain-function surfaces for micro-
wave antennas are illustrated in Fig. 1-1.

The maximum value of the gain function is called the “gain’’; it
will be denoted by Gu. The gain of an antenna is the greatest factor
by which the power transmitted in a given direction can be increased
by using that antenna instead of an isotropic radiator.

The “transmitting pattern’ of an antenna is the surface

=6 @

it is thus the gain-function surface normalized to unit maximum radius.
A cross section of this surface in any plane that includes the origin is
called the “polar diagram’ of the antenna in this plane. The polar
diagram is sometimes renormalized to unit maximum radius.

When the pattern of an antenna has a single principal lobe, this is
usually referred to as the ‘“antenna beam.” This beam may have a
wide variety of forms, as is shown in Fig. 1-1.

The Antenna as a Recetving Device: The Recetving Cross Section.—The
performance of an antenna as a receiving device can be described in
terms of a receiving cross section or receiving pattern.

A receiving antenna will pick up energy from an incident plane wave
and will feed it into a transmission line which terminates in an absorbing
load, the detector. The amount of energy absorbed in the load will
depend on the orientation of the antenna, the polarization of the wave,
and the impedance match in the receiving system. In specifying the
performance of the antenna, we shall suppose that the polarization of
the wave and the impedance characteristics of the detector are such that
maximum power is absorbed. The absorbed power can then be expressed
as the power incident on an effective absorbing area, called the “receiving
cross section,”’ or ‘“‘absorption cross section’” A, of the antenna. If Sis
the power flux density in the incident wave, the absorbed power is

P, = 84, (5)

The receiving cross section will depend on the direction in which the
plane wave isincident on the antenna. We shall writeitas A, = A4.(8,¢),
where 6 and ¢ are the spherical angles, already defined, of the direction
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of incidence of the wave. This function, like the gain function, is repre-
sented conveniently as the surface

r = A.00,¢). (6
The ‘“receiving pattern” of an antenna is defined, analogously tc
the transmitting pattern, as the above surface normalized to unit maxi-
mum radius:
A(6.9) -
A4 rM
It is a consequence of the reciprocity theorem to be discussed in
Chap. 2 that the receiving and transmitting patterns of an antenna are
identical:

Go,¢) _ A:68,0),
GJ[ - fl M (8)
It will also be shown that the ratio A, /Gy is a constant for all matched

antennas:
Ar_\l o )\2

Aryr AT \
G, 4r )

Thus for any matched receiving system

4,(0,6) = 1 G(6,9). (10)

Coverage Pattern, One Way.—The characteristics of an antenna may
also be deseribed in terms of the performance of a radio or radar system
of which it is a part. It is necessary to distinguish between the case of
one-way transmission, in which a given antenna serves for transmission
or for reception only, and the case of radar or two-way transmission, in
which a single antenna performs both functions.

We consider first a transmitting antenna and a receiving antenna
separated by a large distance E. Let (; and G. be the respective gain
functions of the two antennas for the direction of transmission. If the
total power transmitted is P, the power radiated in the direction of the
receiver, per unit solid angle, will be (1/47)PG,. The receiving antenna
will present a receiving cross section (1/47)GA? to the incident wave; it
will, in effect, subtend a solid angle G,\?/47R? at the transmitter. The
power absorbed at the receiver will thus be

GG\

Pr= PRy an

The maximum operating range is determined by the signal-to-noise
ratio of the detector system. If P,, is the minimum detectable signal
for the receiver, the maximum operating range is

P\
Roax = (—15;> i (GG (12




Sec. 1-2] ANTENNA PATTERNS 5

Thus, if it is possible to ignore the effect of the earth on the propagation
of the wave and if G, is constant, it will be possible to operate the receiving
system satisfactorily everywhere within the surface

_(PY'r % %
r= Prm ?GGT [Gt(07¢)] ] (13)
where the transmitter is taken to be at the origin. This surface will be
called the “free-space coverage pattern for one-way transmission.”
Coverage Pattern, Two Ways- -In most radar applications the same
antenna is used for transmission and reception. One is here interested
in detecting a target, which may be characterized by its ‘‘scattering
cross section” o. This is the actual cross section of a sphere that in the
same position as the target would scatter back to the receiver the same
amount of energy as is returned by the target. For this fictitious iso-
tropic scatterer, the effective angle subtended at the transmitter is ¢/R?
and the total power intercepted is

g
s
Scattered isotropically, this power would appear back at the transmitter
as a power flux, per unit area,

1
Pi=4_7rPGt (14)

P, _ PGg
(47)?R*

S=t&r =
Actually, the scattering of most targets is not uniform. The seattering
cross section of the target will in any case be defined by Eq. (15), but it
will usually be a function of the orientation of the target.
The power absorbed b:- the receiver from the scattered wave will be

PoX?G?
(4r)R*
since here ; = (.. If the effect of the earth on transmission of the

waves can be neglected, it will be possible to detect the target only when
it lies within the surface

54
r= [P—‘: (4—1)] [G.(6,0) ] (17)

(15)

P,=A4.8 = (16)

about the transmitter as an origin. This surface will be called the ‘“free-
space coverage pattern for two-way transmission.”

The extent of the coverage patterns is determined by characteristics
of the system and target—output power, receiver sensitivity, target size
—that are not under the control of the antenna designer. The form of
the coverage patterns is determined by but is not the same as the form
of the antenna transmitting and receiving patterns; in the coverage
patterns, r is proportional to [G.(8,¢)]'* rather than to G.(8,¢). The
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desired form of the coverage pattern is largely determined by the use to
be made of the system. From it, one can derive the required form of the
transmitting or receiving pattern of the antenna; it is usually in terms of
this type of pattern that antenna performance is measured and specified.

It is to be emphasized that the discussion of coverage patterns given

Uil

© (d)

FiG. 1-1.—Typical gain-function surfaces for microwave antennas. (a) Toroidal (omni-
directional) pattern; (b) pencil-beam pattern; (c) flat-top flared beam; (d) asymmetrically
flared beam.
here assumes free-space conditions. In many important applications,
coverage is affected by interference and diffraction phenomena due to
the earth, by meteorological conditions, and by other factors. A detailed
account of these factors, which may be of considerable importance in
determining the antenna transmitting pattern required for a given appli-
cation, will be found in Vol. 13 of the Radiation Laboratory Series.

1-3. Types of Microwave Beams.—The most important types of
microwave beams are illustrated in Fig. 1-1.

The least directive beam is the “toroidal beam,”’! which is uniform in

1 Such a beam is also referred to as “omnidirectional.” (IRE Standards and
Definitions, 1946.)
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azimuth but directive in elevation. Such a beam is desirable as a marker
for an airfield because it can be detected from all directions.

The most directive type of antenna gives a ““pencil beam,” in which
the major portion of the energy is confined to a small cone of nearly
circular cross section. With the high directivity of this beam goes a
very high gain, often as great as 1000. In radar applications such a
beam may be used like a searchlight beam in determining the angular
position of a target.

Although the pencil beam is useful for precise determination of radar
target positions, it is difficult to use in locating random targets. For
the latter purpose it is better to use a ““fanned beam,” which extends
through a greater angle in one plane than it does in a plane perpendicular
to that plane. The greater part of the energy is then directed into a cone
of roughly elliptical cross section, with the long axis, for example, ver-
tical. By sweeping this beam in azimuth, one can scan the sky more
rapidly than with a pencil beam, decreasing the time during which a
target may go undetected. Such a fanned beam still permits precise
location of targets in azimuth, at the expense of loss of information
concerning target elevation.

Other applications of microwave beams require the use of beams with
carefully shaped polar diagrams. These include one-sided flares, such
as is illustrated in Fig. 1'1d, in which the polar diagram in the flare
plane is roughly an obtuse triangle, whereas in transverse planes the beam
remains narrow. In radar use, such a beam at the same time permits
precise location of targets in azimuth and assures most effective distribu-
tion of radiation within the vertical plane of the beam. Toroidal beams
with a one-sided flare in elevation have also been developed.

No theoretical factors limit any of the above beam types to the micro-
wave region, but many practical limitations are imposed on long-wave
antennas by the necessary relationship between the dimensions of the
antenna elements and the wavelengths.

1.4, Microwave Transmission Lines.—The form of microwave
antennas depends upon the nature of the available radiating elements,
and this in turn depends upon the nature of the transmission lines that
feed energy to these elements. We therefore preface a survey of the
main types of microwave antennas with a brief description of microwave
transmission lines; a detailed discussion of these lines will be found in
Chap. 7.

Unshielded parallel-wire transmission lines are not suitable for micro-
wave use; if they are not to radiate excessively, the spacing of the wires
must be so small that the power-carrying capacity of the line is severely
limited.

Use of the self-shielding coaxial line is possible in the microwavu
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region but is generally restricted to wavelengths of approximately 10 em
or more. For proper action as a transmission line, a coaxial line should
transmit electromagnetic waves in only
a single mode; otherwise the generator
iy looks into an indeterminate impedance
= I and tends to be erratic in operation.

On this account it is necessary to keep
the average circumference of inner and
outer conductors less than the free-
space wavelength of the transmitted
waves. At wavelengths shorter than
10 em this imitation on the dimensions
of coaxial lines begins to limit their
power-carrying capacity to a degree
that makes them unsatisfactory for
most purposes.

The most useful transmission line
in the microwave region is the hollow
pipe. Such pipes will support the
propagation of an electromagnetic wave
only when they are sufficiently large
compared with its free-space wave-
length. As guides for long-wave
radiation, intolerably large pipes are
required, but in the microwave region
it becomes possible to use pipes of con-
venient, size.  Like the coaxial guide,
there is also an upper limit imposed on
the cross-sectional dimension of the pipe
if it is to transmit the wave in only a

(a) i

e single mode. However, in the absence
of an inner conductor, this size limita-

T II' i tion does not affect the power capacity
Pﬂ i s0 seriously as it does in the coaxial line,
1.5. Radiating Elements.—The

© nature of the radiating elements

Ira. -2 -Transiission lines and

radiating elements. () Center-driven . A
half-wave dipole: (0 rhombie antenna a considerable extent determined })_V
inatineg : vl Lo o e . . . . 5 .
terminating 4 two-wire lines (o) micro-— 4y tare of the line itself.  Typical

wiuve dipole terminating a coaxial line; L .

Gy econical lhorn fed by a circular l(m;{-\\'.‘l\'(‘ ]'{L(]HLHH;.’; clements are the
faveguide; (o) s adiator in the wi :

waveguide; () sdot radiator in the wall “dipole” antennas, such as the center-

of a reetangular guide. X .\ ) R
driven  half-wave dipole, and loop

terminating a transmission line is to

antennas, such as the rhombic antenna, illustrations of which are
given in Fig. 12« and b, It is evident thai the parallel-wire and
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coaxial lines lend themselves to such terminations. Many long-wave
antenna ideas have been carried over into the microwave region, par-
ticularly those connected with the half-wave dipole; the transition, how-
ever, is not merely a matter of wavelength scaling. In a microwave
antenna the cross-sectional dimensions of the transmission line are com-
parable to the dimensions of the half-wave dipole, and consequently, the
coupling between the radiator and the line becomes a more significant
problem than in a corresponding long-wave system. The eross-sectional
dimensions of the dipole element are also comparable to its length. A
typical microwave dipole is shown in Iig. 1-2¢; the analysis and under-
standing of such microwave dipoles is at best still in a qualitative stage.

The use of hollow waveguide lines leads to the employment of entirely
different radiating systems. The simplest radiating termination for such
a line is just the open end of the guide, through which the energy passes
into space. The dimensions of the mouth aperture are then comparable
to the wavelength; as a result of diffraction, the energy does not continue
in a beam corresponding to the cross section of the pipe but spreads out
considerably about the direction of propagation defined by the guide.
The degree of spreading depends on the ratio of aperture dimensions to
wavelength.,  On flaring or constricting the terminal region of the guide
in order to control the directivity of the radiated energy, one arrives at
electromagnetic horns based on the same fundamental principles as
acoustic horns (Fig. 1-2d).

Another type of element that appears in microwave antennas is the
radiating slot (Fig. 1-2¢). There is a distribution of current over the
inside wall of a waveguide associated with the wave that is propagated
in the interior. If a slot is milled in the wall of the guide so as to cut
across the lines of current flow, the interior of the guide is coupled to
space and energy is radiated through the slot.  (If the slot is milled along
the line of current flow, the space coupling and radiation are negligible.)
A slot will radiate most effectively if it is resonant at the frequency in
question. The long dimension of a resonant slot is nearly a half wave-
length, and the transverse dimension a small fraction of this; the perim-
eter of the slot is thus closely a wavelength.

1.6. A Survey of Microwave Antenna Types.—We are now in a posi-
tion to mention briefly the principal types of antennas to be considered
in this book.

Antennas for Toroidal Beams—A toroidal beam may be produced
by an isolated half-wave antenna. 'This is a useful antenna over a large
frequency range, the limit being set by the mechanical problems of sup-
porting the antenna and achieving the required isolation. The beam
thus produced, however, is too broad in elevation for many purposes.

A simple system that maintains azimuthal symmetry but permits
control of directivity in elevation is the biconical horn, illustrated in
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Fig. 1'3. The primary driving element between the apexes of the coues
is a stub fed from a coaxial line. The spread of the energy is determined
by the flare angle and the ratio of mouth dimension to wavelength.
Although this antenna is useful over a
large frequency range, maximum di-
rectivity for given antenna weight and
size is obtainable in the microwave
region, where the largest ratio of
aperture to wavelength can be
realized.

Increased directivity in a toroidal
beam can also be obtained with an
array of radiating elements such as
dipoles, slots, or biconical horns built
up along the symmetry axis of the
beam. The directivity of the array is
determined by its length measured in
wavelengths; high directivities are
conveniently obtained by this method only in the microwave region. A
typical microwave array of this type is shown in Fig. 1-4.

Pencil-beam Antennas.—Beams that have directivity both in eleva-
tion and azimuth may be produced by a pair of dipole elements or by a
dipole with a reflecting plate. The major portion of the energy is con-
tained in a cone with apex angle somewhat less than 180°.

F1a. 1:3.—The biconical horn.

Fig. 1'4—A microwave beacon array.

Similar beams are produced by horn antennas that permit control
of the directivity through choice of the flare angle and the mouth dimen-
sions. Horns are useful at lower frequencies as well as in the microwave
region; indeed, the early work on horns was done for wavelengths ranging
from 50 to 100 cm.

More directive beams—true pencil beams—can be produced by
building up space arrays of the above svstems. Two-dimensional arrays
(mattress arrays) and multiunit horn systems are used at lower frequen-
cies. Their directivity is severely limited, however, by the mechanical
problems occasioned by the required ratio of dimensions to wase-
lengths.  Such arrays have not been employed in the microwave region.
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At these wavelengths it becomes feasible, and indeed very convenient,
to replace the two-dimensional array technique by the use of reflectors
and lenses.

(a)

)
Fia. 1-5.—Pencil-beam antennas. (a) Paraboloidal mirror; (b) metal-plate lens. (Metal-
plate lens photograph courtesy of the Bell Telephone Laboratories.)

Highly directive pencil beams are produced by placing a partially
directive system such as the double-dipole unit, dipole-reflector unit, or



12 SURVEY OF MICROWAVE ANTENNA DESIGN PROBLEMS  [Sec. 1-6

horn at the focus of a paraboloidal reflector or a centrosymmetric lens.
The use of these devices is based on the concepts of rav opties, aceording
to which the reflector or lens takes the divergent rays from the point
source at the focus and converts them into a beam of parallel ravs.
Despite the diffraction effects which hmit the application of ray opties
and are very important in the microwave region, it is practicable to
make the apertures so large that extremely sharp beams can be produced.
Conversely, it is possible to obtain good directivity with an antenna so
small that aireraft installations are practical.  Paraboloidal and para-
bolic reflectors are used at lower frequencies in some special eases, but
in the required large sizes they tend to be less satisfactory than mattress
arrays.

Plastic lenses are used in the microwave region in precisely the same
way as glass lenses in the optical region. In addition, a new device,
the metal lens, has been developed for microwaves. The wavelength
of an clectromagnetic wave in an air-filled waveguide is greater than that,
in free space; from the optical point of view the waveguide is a region
of index of refraction less than unity. A stack of waveguides thus con-
stitutes a refractive medium analogous to dielectric material, from which
a metal lens can be fashioned. Figure 1-5 shows microwave pencil-
beam antennas employing, respectively, a paraboloidal mirror and a
metal lens as directive devices.

Antennas for Flared Beams—Simple flared beams and one-sided
flares are likewise produced by means of reflectors and lenses and by
arrays of dipole-reflector units or radiating slots.  Such arrays by them-
selves give beams that are highly directive in planes containing the array
axis but are fairly broad in the transverse plane. In order to gain greater
directivity in the transverse plane the array may be used as a line source
along the focal line of a parabolic eylindrical reflector; this focuses radia-
tion from a line source in the same way that a reflector in the form of a
paraboloid of revolution focuses radiation from a point source. By
suitable shaping of the cross section of the cylinder, one can produce
beams with carefully controlled one-sided flares and other useful special
characteristics. Typical microwave antennas of this type are shown in
Fig. 1-6.

Except for a few types of lincar array, all microwave antennas use
primary sources of radiation together with reflectors and lenses. The
radiating element, which extracts power directly from the transmission
line, is spoken of as the “primary feed,” the “antenna feed,” or simply
the “feed”; its radiation pattern as an isolated unit is known as the
“primary pattern” of the antenna. In combination with the optical
elements of the antenna, the feed produces the over-all pattern ¢ the
antenna, often referred to as the “secondary pattern” of the antenna.
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One of our major problems will be to establish the relationships among the
primary pattern of the antenna feed, the properties of the optical ele-
ments, and the secondary pattern.

(b)
F1g. 1-6.—Antennas for proaucing Hlared beams. (a) Simple flared-beam antenna; (b)
one-sided flared-beam system.

1-7. Impedance Specifications.—The achievement of a satisfactory
antenna pattern is by no means the only problem to be considered by the
antenna designer. It is important that the antenna pick up maximum
power from an incident wave and that it radiate the power delivered to
it by a transmission line without reflecting an appreciable portion of it
back into the transmitter. In other words, it is important that the
antenna have satisfactory impedance characteristics.
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The impedance problem in microwave antenna design takes on a
somewhat special character because of the characteristics of other ele-
ments of the system, particularly the transmitting tubes. Conventional
triode-tube oscillators are not generally useful in the microwave region.
This is due to inherent limitations in the tube itself and to the fact that
elements in the tank circuit no longer behave like lumped impedances.
The self-resonant frequency of the ordinary tube is considerably below
the microwave range, and it is therefore impossible to design a practical
circuit that will oscillate at the required high frequency. A modified
triode has been designed for use down to 10 cm. It has limited power
capacity and is used where low power is aceeptable. Jore generally,
magnetrons and klystrons are used, the former for very high power levels.
The operating characteristics of these tubes are very sensitive to the
impedance into which they are required to operate, the frequency varying
rapidly with changes in this impedance. Alore serious than this “fre-
quency pulling” is the fact that the magnetron will cease to oscillate
without too much provocation. (loser tolerances are, therefore, imposed
on the impedance of a microwave antenna than those which would be
dictated by power considerations. Many tubes can be tuned over a fre-
quency band, but at any frequency setting they must operate into the
proper impedance. Thus it is customary to specify that a microwave
antenna be satisfactorily matched to the transmission line within close
tolerances, not simply at an intended operating frequency, but over a
band of frequencies.

In rapid-scanning antennas the impedance problem is even more
complex. The arrangement of the mechanical parts varies during a
scan; it is necessary to make sure that the impedance properties of the
antenna remain satisfactory in all parts of the sean, as well as for a given
range of wavelengths. This element of the problem has an important
bearing on the choice of schemes for rapid-scanning antennas.

Throughout this volume the impedance characteristies of antennas
will be considered in parallel with their radiation patterns.

1-8. Program of the Present Volume.—This book falls into four main
divisions: basic theory, theory and dexign of feeds, theory and design of
complete antenna systems, and antenna-measuring techniques and
equipment.

The following chapter summarizes certain parts of conventional cir-
cuit theory that are pertinent to antenna problems. TIn particular, it is
shown that the antenna designer need make no distinetion hetween trans-
mitting and receiving antennas. Chapter 3 states the basie principles
of field theory and applies them to the discussion of current distributions
as sources of radiation fields. Chapters 4 to § then discuss electromag-
netic waves without regard to their sources. Chapter 4 gives a brief
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treatment of wavefronts and rays. Chapter 5 deals with the interaction
between electromagnetic waves and obstacles; the general theory of
reflectors is here developed as a boundary-condition problem, and s
discussion is given of the relation between this theory and conventional
diffraction theory, which also finds application to microwave antenna
problems. Finally, Chap. 6 applies this theory in treating one of the
fundamental problems of antenna design—the relation between the field
distribution over the aperture of an antenna (such as a lens or reflector)
and its secondary pattern.

Chapter 7, on microwave transmission lines, serves as introduction
to the chapters on antenna feeds: dipole feeds, linear arrays, and horns.
Of these types all but the first have found applications also as complete
antennas; these applications will be indicated in these chapters.

A chapter on lenses precedes the treatment of more complex antenna
systems which is organized according to the type of beam to be produced:
pencil beams, simple fanned beams, and more complexly shaped beams.
When an antenna is installed on ground or a ship or airplane—generally,
enclosed in a housing—its performance is modified from that in free
space by its enclosure and neighboring objects. The subject of antenna-
installation problems is discussed briefly to acquaint the engineer with
the phenomena that may be expected to occeur and some of the currently
known solutions of the problems.

The concluding chapters provide a statement of the basic techniques
of antenna measurements and a description of certain types of measur-
ing equipment that have given satisfactory service in the Radiation
Laboratory.



CHAPTER 2
CIRCUIT RELATIONS, RECIPROCITY THEOREMS

By 8. SiLver

2-1. Introduction.—The circuit theory considerations and techniques
characteristic of low-frequency radio work do not carry over in a simple
manner to the microwave region. Thus, for example, in treating a cir-
cuit element as a lumped impedance, it is assumed that the current
(and voltage) at any given instant has the same value at every point in
the element. This assumption is valid if the dimensions of the circuit
element are small compared with the wavelength, with the result that
the phase differences between separated points in the element are negligi-
ble. If, however, the wavelength becomes comparable to the dimensions
of the element, these phase differences become significant; at a given
instant the current at one point in the element may be passing through
its maximum value, while at another point it is zero. In such cases the
circuit element must be regarded as a system of distributed impedances.

The extension of conventional circuit theory to microwave systems
is further complicated by the use of circuit elements such as waveguides,
in which voltages and currents are not uniquely defined. The analysis
of these clements must be approached from the point of view that they
serve to guide electromagnetic waves; attention is centered on electric
and magnetic fields rather than on voltage and current. The final result
of the field theory analysis is that under suitable conditions—which are
generally encountered in practice—a waveguide can be set into equiva-
lence with a two-wire transmission line in which the fundamental quan-
tities are voltage and current. The latter are directly related to the
waveguide’s electric and magnetic fields, respectively.! By means of
this equivalence the concepts of impedance, impedance matching, and
loaded lines are carried over to waveguides.

A waveguide can itself be treated as a system of distributed imped-
ances. Distributed impedances are treated in the same way as lumped
impedances, by use of Kirchhoff’s current and voltage laws for networks.
A system of distributed impedance can, in fact, be replaced by a network
of lumped-impedance elements. The latter differ from the conventional
radio-circuit elements in that their impedance is a transcendental func-

! The subject is treated in Chap. 7. A full treatment of the extension of circuit
theory to waveguides will be found in Vol. 8 of this series.
16
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tion of frequency rather than an algebraie function. By means of these
equivalent lumped-element networks, the network theorems that are
applicable to low-frequency lumped-element networks are carried over
to systems with distributed impedance. The first part of this chapter
will review several network theorems and the two-wire transmission-line
theory that are used in microwave circuit theory. The subjects will be
treated briefly, the recader being referred to standard texts' for more
complete discussions and proofs of the results quoted here.

The relation between a transmitting and a receiving antenna also
can be expressed in terms of an equivalent network. In this way one
can arrive at a reciprocity theorem which relutes the transmission char-
acteristics of an antenna to its receiving characteristics.  Of particular
importance to antenna design 1s the fact, proved by use ef the reciprocity
theorem, that the transmitting pattern of an antenna is the same as its
receiving pattern.” The reciprocity theorem will be discussed in the
latter part of this chapter.

2-2. The Four-terminal Network.—Let us consider an arbitrary net-
work, free from generators, made up of linear bilateral elements. A
linear bilateral element is one for

which the relation between voltage 4o &b 2 e
and current is linear:
Vv =1z, (1) i) 1
BO—a— ——OD

where the value of the impedance Z
is independent of the direction of the
voltage drop across the element.®? For convenience the network will be
pictured as enclosed in a box and presenting to the outside only a pair
of input and a pair of output terminals. This is illustrated schematically
in Fig. 2-1. A boxed network of this type is referred to as a four-terminal
or two-terminal-pair network.

The network as a unit involves four quantities: the current i, the
voltage drop V, from A to B, the current ., and the voltage drop V,
from € to D. 1In consequence of the linear property [Kq. (1)] of each
component element of the network, the relations between the, voltages
V1, Vs and the currents ¢, 7, are linear:

F1a. 2:1.—Four-terminal network.

Vl = leil - le’[Q,
V‘) Z21/L.1 - Z22’L'2.

@)

1 W. L. Everitt, Communication Engineering, McGraw-Hill, New York, 1937;
E. A. Guillemin, Communication Networks, Vols. 1, 11, Wiley, New York, 1931; T. E.
Shea, Transmission Networks and Wave Filters, Van Nostrand, New York, 1929.

2 8ee Chap. 1 for the definitions of these patterns.

3Tt is assumed that we are dealing with a single frequency, that both the voltage
and current depend on time through the same factor e/«
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The impedance coefficient Z; is the input impedance at AB when CD
is open-circuited (i, = 0); similarly Zs; is the input impedance at CD
when AB is open-circuited. The quantities Z,» and Z.; arc known as
the transfer impedance coefficients of the network. As a result of the
bilateral property of the component elements of the network, the transfer
impedance coeflicients satisfy the reciprocity relation!

Zm = Z21- (3>
As an alvernative to the relations expressed by Eq. (2), the currents
may be expressed as linear functions of the voltage:
7 =YV, — lesz (4)
ia = YoV — ViV

The admittance coefficient Y, is the input admittance at AB when the
terminals CD are short-circuited; Y. is the admittance at CD when AB
is short-circuited; and Y,s, Y., are the transfer admittance coefficients.
The latter coefficients satisfy a reciprocity relation

le = sz (5)

in the case of bilateral elements. The impedance and admittance coeffi-
cients of the network are related:

Z Z Z
Y= %; Yoo = *A*I’I; Yo=Y, = Xw’ (6)
where
A = Z11Zyy — Z19Zar. (7)

By virtue of the reciprocity relations, [13gs. (3) and (5)], the network
has only three independent parameters. Consequently it can be replaced
by a network of three lumped-im-
pedance elements arranged in the
form of either a T- or [I-section as
shown in Fig. 2-2. The imped-
ance elements of the T-section are
T-section b - section b designated b_V Z], ZQ, Z,z. In the
Fig. 2-2.—"T-and m-section equivalents of a  case of the IT-section it is more con-

four-terminal network. venient to use admittances; the
elements are designated by Ya = 1/Z4, Y = 1/Zs, Ye = 1/Z.. The
relations between the elements of the reduced networks and the coefficients
of Egs. (2) and (4) are

a. T-section:

B

Z] = le - Z12,
ZZ = ZZZ - Zl?, (8)
Zs = le,

LE. A. Guillemin, op. cit.,, Vols. I, 1I, Wiley, New York, 1931, particularly
Vol. I, Chap. IV.
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b. Il-section:
YA = Yll - y7127
Yc = Yn - le, (9)
YB = }712.

The relations between the T- and Il-section elements for one and the
same four-terminal network are given by

Za = % Zs = Z% Zo = ZAJ (10)
where the quantity A is that defined in Iiq. (7).

The network can also be characterized by any three of the following
measurable quantities: the input impedance at AB when CD is short-
circuited, the input impedance at AB when CD is open-circuited, the
input impedances at CD when AB
is open-circuited or short-circuited. Zr iy i,

The relations between these quan- A c
tities and the impedance coeffi- 2z,
cients or the T- and II-section
elements can easily be derived from B D
Egs. (2) and (8) or (9); they are @

given explicitly by Everitt.!

2-3. The Rayleigh Reciprocity i i
Theorem.—The reciprocity relation P1
between the transfer impedance co- z
efficients given in Eq. (3) is funda-
mental to the various reciprocity
theorems pertaining to networks. B D
All of these theorems are variants o)
of the genera] theorem derived by I 2:3.- “Reciprocity theorem for the four-
Rayleigh.? The particular form of terminal network.
the theorem as it applies to a four-terminal network will be discussed here.

In Fig. 2-3, 41 and 7, are the currents in the network terminals when a
generator of emf V¢ is applied to the terminals A B through an impedance
Zrto feed a load Z; across the terminals CD; 7} and 7, are the correspond-
ing currents at the terminals when a generator of emf V is applied to the
terminals CD through an impedance Z; to feed a load Z; across AB.
The generator in each case is assumed to have zero internal impedance.
The reciprocity theorem states that

Veil = Vita. (11)

YW, I.. Everitt, op. cit., Chap. II.
* Rayleigh, Theory of Seund, Vol. I, Secs. 105-111, Macmillan, New York, reprinted
by Dover Publications, New York, 1045,
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Using Egs. (2), we find for Case a of Fig. 2-3

Zgll'v(}w .
(Z1 4 Z1)(Zoo + Z1) — Z12Zm

i2=

For Case b, remembering that the role of input and output terminals
must be interchanged in Kgs. (2), we have

7.V .
(Zi+ Ze)(Zar + Z1) — Znadin
Multiplying the first of these by V}, and the second by Vg, one finds that

the reciprocity theorem in Tiq. (11) holds provided that Z, = Zs.
Conversely, if a four-terminal network is linear in the sense of q. (2

7=

nZy  Zpiy

Fig. 2:4.—Thévenin's theorem and the maximum-power transfer condition.

and if the reciprocity theorem [Eq. (11)] holds for the network, then the
transfer impedance coefficients satisfy the reciprocity relation of Eq. (3).

2-4. Thévenin’s Theorem and the Maximum-power Theorem.—Con-
sider a network made up of linear bilateral elements and containing a
system of generators. Thévenin’s theorem states that the current
through any impedance Z; across a pair of terminals C, D of the network
is the same as the current in an impedance Z, connected across a generator
whose emf is the open-circuit voltage across CD (the voltage with Z,
removed) and whose internal impedance is the input impedance meas-
ured at CD looking into the passive network (the network with generators
replaced by their respective internal impedances).! The theorem is illus-
trated diagrammatically in Fig. 2-4.

Thévenin’s theorem is useful in discussing the conditions for maxi-
mum-power transfer from a generator through a network to a load
impedance Z;. As is well known, when a load impedance is connected
directly to a generator of internal impedance Z¢, maximum-power trans-
fer is effected with a load impedance that is the complex conjugate cf the

generator impedance:
Zy = 7%

! W. L. Everitt, op. cit., p. 47.
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Consider then the case in which the load Z1 is fed by the generator through
a four-terminal network, the generator emf being Vs and ts internal
impedance Z¢ (Fig. 2-4). The four-terminal network may be replaced
by its T-section equivalent as shown. By Thévenin’s theorem the sys-
tem is equivalent to a generator of emf VoZ3/(Z11 4+ Zs) and internal
imgedance Zm'—— VANAVATE = ZG.) e S

feeding the load impedance Z. di- ) iG+da)

rectly. It follows then that maxi-  —=—1 1

mum-power transfer will be achieved ‘\\ '

with a load that is the complex con- I
jugate of the internal impedance of
the effective generator:

_(Zw)?
Zh + Z;
2-6. The Two-wire Transmission

Line.—One of the most important
distributed-impedance systems from

! _—+2
i)
~i(z +dz)

CR—

ZL = Z;kg - (12)

. . Z,
the point of view of antenna theory G z
is the two-wire transmission line.! T
For the present the line will be con- Vi

sidered in its conventional form, as a
pair of linear conductorsin a plane,
which support the propagation of a wave of wavelength small compared
with the length of the lines The problem of interest is the distribution
of voltage and current along the line for a wave of single frequency, in
which the voltage and current vary with e,

The line is shown schematically in Fig. 2:5 as a pair of parallel wires.
In general, however, the spacing between the wires may vary along the
line; the only restriction imposed is that the line have an axis of sym-
metry. Position along the line is specified by the coordinate z along
the symmetry axis. 1t is further assumed that the line is isolated from
perturbing objects, so that at any position along the line the currents
at every instant may be equal and opposite in the two component lines.
The properties of the line are specified Ly its distributed parameters:
(1) the series impedance per unit length,

I'1G. 2-5.—Two-wire line.

3(z) = R(z) + jol(2), (13a)

where R(z) is the series resistance and L(z) the series inductance per
unit length, taking both component lines together, and (2) the shunt

'W. L. Everitt, op. cit. For a very complete treatment the reader is referred
to R. W. King, H. R. Mimno, A. H. Wing, Transmission Lines, Antennas, and 1 ave
Guides, MeGraw-Hill, New York, 1945, Chap. 1.
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admittance per unit length,
N(2) = G(z) + jwC(2), (13b)

where G(z) is the transverse conductance and C(z) the capacitance per
unit length between the component members of the line. These param-
eters may be functions of position because of variations in the conductors,
in the spacing between the latter, or in the strueture of the surrounding
dielectric medium.

Taking either conductor for reference, let 7(z) be the current at the
point z and V(z) the voltage drop from the reference conductor to the
other member at the same point. To obtain the space dependence of
i(z) and V(z), consider a section of line of length dz about the point z.
Applying Ohm’s law, we have

Viz +dz) — V(z) = —i(2)3(z) dz
1z + dz) — 1(z) = —V()N(2) dz

and

for, respectively, the series and shunt relations across the element of
line. The terms on the left-hand side, by use of Taylor’s theorem,
become (dV/dz) dz and (di/dz) dz respectively. Thus the differential
equations of the line are found to be

2~ —3@it), (140)
f?z = —NEV(2). (14b)

Second-order differential equations for voltage and current alone are
obtained by eliminating voltage or current from one or the other of
these equations:

- [% (In 3)] T @my =0, (15a)
% - [jz (In sm}g—z — (3M)i = 0. (15b)

From a generalized point of view, Eqs. (14) can be regarded as the
definition of a ‘“‘two-wire” transmission line. That is, given a physical
system supporting a wave with time dependence ¢, the propagation
of which is expressible in terms of a single coordinate 2 and two quan-
tities (¢,V) related by equations of the form of Eqs. (14), it is possible to
set up a two-wire line representation for the system. The voltage and
current of the equivalent line are directly proportional to the wave quan-
tities entering the differential equations, and the series impedance and
shunt admittance per unit length of the equivalent line are proportional
to the coefficients of the wave quantities in the differential equations.
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The generalized conecept of a transmission line will be made use of in the
discussion of waveguides in Chap. 7, where it will be scen that the clec-
tric and magnetic field vectors satisfy transmission-line cquations.

2:6. The Homogeneous Transmission Line.—quations (15) are the
general equations for a line whose parameters 3 and 9 are functions of
position. We shall be concerned mainly with lines for which the param-
eters are independent. of position, and the subsequent discussion will be
confined to the so-called homogeneous line. For such a line the coefli-
cients of dV/dz and di/dz in Kqgs. (15) vanish; consequently, voltage and
current satisfy the same differential equation. The voltage equation
becomes

av , ,
G~ BV =0 (16)

Defining the complex number v by

v =a+j8 = (BW* )

with the square root taken to be such that both « and 8 are positive
quantities, we find the solution of Eq. (16) to be

V(z) = A7 + Ao (18)
V(z) = Aje—aze=ibz 4 A qenzeif, (18a)

or

The current i(z) has the same form but is not independent of the voltage.
The relation between them is established by Xq. (14a). On inserting
Eq. (18) into this equation, it is found that

i) = Zio (A — Aqer). (19)

The constant Z, is known as the characteristic impedance of the line; it

is given by .
- (3Y"
7= (3 (20)

If Eq. (18a) is multiplied through by the time factor e, it will be seen
that the right-hand side is the sum of two waves: The term e 77 represents
a wave traveling in the positive z-direction, whereas e/ represents a
wave traveling in the negative z-direction. The wavelength of propaga-
tion is related to the phase constant B by

27
A== 21)
5 (
The amplitude of each component wave undergoes attenuation along the
direction of propagation as represented by the factors e~ and e®* respec-
tively; o is known as the voltage attenuation constant. It is seen from
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Eq. (17) that « may be different from zero, that is, the line may be lossy
if one or both of the distributed parameters 8 and 9 are complex, and
that the line is nonlossy, a = 0, if the distributed parameters are both
pure imaginary quantities of the same sign. - In the case of the two-wire
line for which the distributed parameters are given by Iigs. (13) this
means that the line is nonlossy if the series resistance and shunt conduc-
tance are zero, that is, if the distributed impedance along the line is
purely reactive. :

The amplitudes A, and 4, of the component waves are determined by
the excitation conditions at the input end of the line and the nature of
the termination of the line. Consider a line of total length L, fed by a
generator of emf V¢ and internal impedance Zg, and terminated in a load
impedance 7. as shown in Fig. 2:5. In this case the component waves
are interpreted simply as a wave of amplitude 4, incident on the load
Z. and a wave of amplitude A, reflected by it. Let the origin 2 = 0 be
taken at the termination; the generator is thus located at z = —L.
The impedance at any point z along the line looking toward the termina-
tion is the ratio Z(z) = V(2)/i(z), which is, by Eqgs. (18) and (19),

A + A w)_

A 16777 — A 207?

Z(z) = ZU< (22)
At the terminal point, z = 0, this must be equal to the terminating
impedance Z; we have then

A+ Ay _ Zs,

A~ A I (23)

Thus the ratio of the amplitudes A./A, is determined solely by the
termination. This shows also the significance of the characteristic
impedance: If Z; = Z,, then A, = 0; there is no reflected wave. A line
terminated in an impedance cqual to its characteristic impedance thus
behaves as though it extended to infinity.

A second relation between the amplitudes is obtained from the con-
ditions at the input end of the line. The input impedance Z;, to the
line is obtained from Eq. (22) by setting 2z = —L, and the current at
the point is obtained from Eq. (19) by the same substitution. We have
then

Ve = toe—ny(Ze + Z:),

whence we obtain

(1 + %) A + (1 - i;) A 7t = V. (24)

From Eqgs. (23) and (24) we finally get

_ V(.'ZU(ZL + Zn)
N =G F I+ et = (e 207, — Zoe 59
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and
VeZolZ — Zo)

= e T 200G F Zo)ers — (Z — Ta) (41 = Zojo v (256)

A,

It should be noted that these expressions give the amplitudes of the inci-
dent and reflected waves at the termination, or more specifically at
2z = 0. The respective amplitudes A}{z) and 45(z) at an arbitrary point
z are given in terms of the above by

Al2) = Ay Ab(e) = Ager. (26)

The ratio of the amplitudes of the waves at any given point is known as
the voltage reflection coefficient T'(z) at that point. We have

= i;@ = il._? 2vz 7
T(z) = Az " Ale“’ 27
or

1'(z) = TI'(0)e?r, (27a;

where T'(0) is the reflection coefficient at the point 2 = 0. On making
use of Egs. (26) and (27) together with (22), we find that the relation
between I'(z) and the impedance Z(z) is
Z(z) — Zy
Tz) = 5~ 28
(2) BEA (28)
Tt is convenient for many purposes to introduce the normalized impedance

£(2):
() = 72 (20)

The relations between the reflection coefficient and the normalized
impedance are then

_$ — 1 I
F(Z) - f'(Z) _+_ 1’ f - 1 —T (30)
Equation (27a) expresses the transformation property of a transmis-
sion line. It is readily seen that Eq. (27a) can be generalized to the
form

T(z £ 1) = I'(z)ex? = T(z)et2eloxi8l, 3D

The phase of the reflection coefficient has a space periodicity of A\/2.
The amplitude of the reflection coefficient is independent of position
in a nonlossy line. In a lossy line it decreases as we move along the line
toward the generator from the load, corresponding to the increase in the
amplitude of the incident wave and the attenuation of the reflected
wave. The transformation property of the line applies to the impedance
likewise. From Egs. (28) and (31) it follows that the impedance at a
point z — [ is related to the impedance at the point z by
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o Z(2) + Z, tanh (71)]_
2t =D =Zo [zu TZ0) tanh (7)) (32)
or, in terms of the normalized impedance,

g—(z -1 = M(Ll) (32(1)

1+ ¢ tanh (v0)

A section of line of length I thus serves as an impedance-transformation
device, converting an impedance Z(z) at the output end into an imped-
ance Z(z — 1) at the input end. The impedance transformation is asso-
ciated with the reflected wave; if the terminal impedance is equal to the
characteristic impedance, the reflection coefficient vanishes and the input
impedance at any point on the line (looking toward the termination)
is equal to Z,. If the reflection coefficient is zero, the termination is said
to be matched to the line; otherwise, it is said to be mismatched.

The properties of the line can be discussed in terms of admittance as
well as impedance. The corresponding relations are obtained by replac-
ing Z by 1/Y. The admittance transformation effected by a section of
line is

_ v | Y@ + Yo tanh (v])

Y =0=Y0 ¥ I v tanh (1) ) (33)

where the characteristic admittance is defined to be

1
Vo= 34
0 7 ( )
A normalized admittance 7(z) is defined in a similar manner as the
normalized impedance

o) = L )%) (35)

and the relations between it and the reflection coefficient are
_ 1= _ =T
I+ 77147
2.7. The Lossless Line.—The further discussion of the transmission
line will be particularized to the case of a lossless line. The microwave
lines to be treated in Chap. 7 can be considered to be lossless over the
length of line that enters into the problem of the design of an antenna.
If the line is lossless, @ = 0 and the propagation constant v is a pure
imaginary,

(36)

v = JB.
The voltage and current relations in this case are
1(2) = Aw 78 4 At (37a)
i) = L (At — Ay, 37h)

A
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and the impedance and admittance transformation formulas become

_ 5 _ Fz) +jtan gl
S =0 = tan gl (38)
n(e — 1) = n(z) +j tan Bl

1 + jn tan Bl

(39)

The transformations have a space periodicity of a half wavelength:

r(z + g) - ¢);
n(z + %) = n(2);

the impedance and admittance take on the same values at intervals of a
half wavelength. The reflection coefficient is likewise periodic; if in
Eq. (31) « is set equal to zero, we get

T'(z £ 1) = I'(z)ete, (40)

Since I' passes through a complete cycle of phase over a half-wavelength
section of line, there are two points within every such interval at which
I' is a real number. It follows from Eq. (30) that at these points the
impedance and admittance are real numbers. The magnitude of T' does
not vary along the line. Consequently, at every point the reflection
coefficient is a measure of the power loss arising from the impedance
mismatch at the termination. The power carried by the incident wave
is proportional to |A,[?, and that carried by the reflected wave is propor-
tional to |4./2. The magnitude of T, is given by

Ay

| = [54;

Il = 55 (41)
hence |T'|? is the fraction of the incident power reflected by the termina-
tion, and 1 — |T'}? is the fraction of the incident power extracted by the
termination.

In measurements on a transmission line the significant quantity is
the square of the magnitude of the voltage averaged over a time cycle,
given directly by 3|V (2)/%2. In computing this from Eq. (37e) it must be
remembered that the amplitudes A, and A, are in general complex.
Writing

A1=

A,le, Ag = |Aei, (42)
in Eq. (37a), we obtain
V@R =3VV* = $ 1412 + 14,2+ 2[4, 4,] cos (282 — ¢ + ¢2)].  (43)

Thus the time average |V]? takes the form of a standing-wave pattern
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along the line. The maxima and minima occur at those points for which

282 — ¢1 + ¢2 = X207
and
28z — 1+ ¢2 = £(2n + D), n=2012 -,

respectively, the distance between a maximum and adjacent minimum
being a quarter wavelength. The maximum and minimum values are

IVite = (41 + 42
Wi = (41 = [Aa)2

The ratio of the maximum to minimum value 1s known as the power
standing-wave ratio, designated here by r?:

2 Ve _ (1.41! + |A_21>?

VI \[Au] = 4]
The square root of power standing-wave ratio r is known as the voltage
standing-wave ratio. It follows from lq. (41) that

_ |
r = 1 — 11,]) (44a)
with the inverse relation
r—1
| b (41b)

The magnitude of T may be determined from the measured standing-
wave ratio by means of Eq. (44b). The phase of T' can be deduced from
the positions of the maxima and minima. On inserting Eq. (42) into
Eq. (27a) and replacing v by j8, we have

F(z) = |Teitpe—trton, (45)

Thus T takes on real values at the points where the standing-wave pat-
tern takes on maximum and minimum values. The phase of T' may be
taken to be zero at a maximum point, with

I (46a)

then at a minimum point the phase of T will correspondingly be =, and
) 1—r

T = |[]ei* = 15 r (46b)

The phase of T at any other point, taking a maximum or minimum posi-
tion as a reference point, is then readily deduced by means of Eq. (40).

The impedance at any point can likewise be deduced from measured
values of the standing-wave ratio and the positions of maxima or minima.
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It was noted previously that the impedance and admittance is real 2t the
points where T' is a real number; hence the impedance is real at the
maximum and minimum points of the standing-wave pattern. Making
use of Eq. (30) together with IEgs. (46), we find in fact that the impedance
takes on the following values at those points:

1-1|r 1 . ™H
¢ = 17—}-7111: = (min). (47b)

Given the value of ¢ at any one such point, the value at any other point
is obtained by means of the transformation formula [[q. (38)]. Similar
considerations apply to the admittance values. At the points of maxima
and minima the admittance is a pure conductance with the values

(max), (48a)
(min). (48b)

2.8. Transformation Charts.—The impedance and refiection coeffi-
cient transformations along a line can be presented graphically in forms
that are very useful in experi- )
mental work. There are many I
types of charts, of which two, the T
so-called circle diagrams, will be
discussed here. They are especi-

-
n=r

ally suited to lossless lines. Iri=1
The Reflection Coefficient

(Smith) Charts.'—Consider first L

the reflection coefficient transfor- The

mation along a lossless line as ex-
pressed by Eq. (45):

[(z) = IT|eis—ortey.  (2:45)

Let us set up a complex plane, as
shown in Fig. 2-6, with the real
and imaginary axes associated
with corresponding components of T, designated by Ty and I'n.. T'is
then represented by a vector from the origin. The magnitude of T can
never exceed unity because the amplitude of the reflected wave must be
less than that of the incident wave; consequently we are confined
to the portion of the complex plane circumseribed by the unit cirele.
It is evident that polar coordinates in the complex plane are more
appropriate than the cartesian coordinates Tw., Tn. for discussing
1 P. H. Smith, Electronics, January, 1944,

I'16. 2:6.—0n the reflection coefficient chart.




30 CIRCUIT RELATIONS, RECIPROCITY THEOREMS [SEc. 2.8

the line transformation of Eq. (45). The family of circles centered about
the origin correspond to curves |T'| = constant or, by virtue of Eq. (44a),
to curves of constant voltage standing-wave ratio. The curves of con-
stant phase of T are the family of radial lines from the origin. The line
transformation given by Iiq. (45) corresponds to a rotation of T' about the
origin without change in length: displacement along the line in the direc-
tion of increasing z, that is, away from the generator, produces an increase
in the phase of T', thus rotating I' in the positive sense (counterclockwise),
whereas a displacement along the line toward the generator rotates I'
in the negative sense.

The polar coordinate curves are of such simple form that usually they
are not drawn in explicitly on the chart. Instead, another pair of families
of curves are introduced, the circies of constant resistive and reactive
components of the impedance, B and X respectively. Writing

() +3)

and T = Tr, + jI'm, in Eq. (30),

+
—

|
|

C= oy (2:30)

—

and separating real and imaginary parts, one finds

R _ 1 - (T} + T

Zy (1 —Tw)?+ I3/

X ol (49)
Ze (1 = Tp)? + T2,
These can be written as
R 2
Ty — —20 R J}fﬁ (50a)
1+ 5 1+
tnl ()
(Tne = 1) +{T = Ze) o (2 (50b)
Re T Im X X ’

respectively. It is seen from Eq. (50a) that the curve R/Z, = constant
is a circle with its center on the positive real axis at (R/Zo)/(1 + R/Zy)
and radius 1/(1 + R/Z,). Every such circle is tangent to the line
Tpe = 1 at its point of intersection with the real axis. The circle cor-
responding to B/Z, = 1 passes through the origin and encloses all the
circles for which R/Z, > 1.

Similarly Eq. (50b) shows that the curves X/Z, = constant are a
family of circles. For a given value of X/Z,, the center of the circle is
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at the point (1, Z,/X) and its radius is |Z,/X|. Every such circre is
tangent to the real axis at the point I'e = 1. The curves lying in the
upper half of the plane correspond to positive (inductive) reactance, and
those in the lower half plane to negative {capacitive) reactance. It
can be shown that the circles X/Z, = constant are orthogonal to the
circles B/Z, = constant.

Fig. 2-7.—The Smith chart.

The Smith chart consists of the circles just described. A typical
chart is shown in Fig. 2-7, the circles being labeled with the corresponding
values of the parameters R/Z,, X/Z,. These curves serve as a system
of coordinate lines. The terminal point of the vector T associated with
the complex number ¢ = (R/Zo) + j(X/Z,) is located at the intersection
of the circles R/Z, and X/Z,. The distance from the origin to the inter-
section of the circle R/Z, with the real axis is equal to the magnitude of
the vector'T that corresponds to a standing-wave ratio

R . R
T—ZO if Z’0>1,

Zo . R
T—E if Z)<1
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This follows from the fact that T is real when ¢ is real and from the rela-
tions of Eq. (47) between the value of ¢ when it is a real number and the
standing-wave ratio.

To illustrate these relationships let us suppose that the standing-wave
ratio r has been measured on a given line, together with the position of
a voltage minimum; the reflection coefficient and impedance are desired
at a point a distance ! from the minimum position away from the gen-
erator. It will be recalled [Eq. (46b)] that at a maximum position the
phase of I' is equal to «; I' is then directed along the negative real axis.
The impedance at this point is real, being B/Zo = 1/r. The vector T
thus extends from the origin to the circle corresponding to B/Z, = 1/r.
Counterclockwise rotation of this vector through an angle 28! carries us
to the desired point on the chart; the components of { at that point are
read off from the pair of intersecting circles. It will be noted on Fig.
2-7 that the periphery of the chart carries a phase angle scale with the
phase designated by the ratio of line length to wavelength.

The Smith chart can also be used to study the admittance transforma-
tion. First it should be noted that there are two conventions for the
definition of admittance. The convention adopted in this book defines
the normalized admittance 3 = (G/Y,) + j(B/Yo) to be the reciprocal
of the normalized impedance { = (R/Z.) 4+ j(X/Zs); positivesusceptance
B thus corresponds to negative (capacitive) reactance. The other
convention defines the admittance to be the conjugate of the reciproeal
impedance, in order that positive susceptance (like positive reactance)
should be inductive. The use of the latter convention changes the use
of the chart in ways which the reader can easily develop.

Equation (36) gives the relation between the admittance and the
voltage reflection coeiiicient:

— 1 — F-
"1
Let us define a new coefficient
Y= —-T (51)

and associate with it a complex plane with axes Tg. and Ti.. (Actually
the same complex plane serves for both I and T, the two vectors making
an angle of 180° with each other.) The vector T is, in fact, the current
reflection cocflicient, expressing the ratio of the amplitude of the reflected
current wave to the amplitude of the incident current wave. The law
of transformation of T along the line is precisely the same as that given
for T' by Eq. (49). On substituting Eq. (51) into the relation between n
and T, we obtain
Lo LT

1= (52)

This is the same as the relation between ¢ and T'; it follows that the curves
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G/Yy = constant are a family of cireles that coineide with the constant
R/Z, family in the ¢-I' transformation and that the curves B/}, = con-
stant coincide with the X/Z; circles. With respeet to the latter 1t
should be noted (in using the chart for admittance) that the curves lying
in the upper hall plane represent capacitive susceptance. The dis-
tinction that need be made between the use of the chart for impedance
and admittance can be made clear by considering the problem of finding
the admittance at a point distant { from a voltage minimum in the diree-
tion away from the generator, the standing-wave ratio again being r.
At a voltage minimum I lies along the negative real axis; hence T extends
along the positive real axis to the circle

G —_—

vy, "
The starting point thus lies on the positive real axis, instead of on the
negative axis. Moving along the line away from the generator again
rotates T in the positive sense (counterclockwise) through an angle 234,
The admittance at the new point is determined from the pair of inter-
secting coordinate curves, just as in the case of the tmpedance. Tt

should be clear that the admit-

. ) x ey h
tance and impedance points on the Jz; (yo)
Smith chart for one and the same =Zﬁ+jzi
point on the line are diametri- . / 0 e
cally opposite to one another. \

The Smith chart is particularly
suited to the study of an imped-
ance mismatch that arises from
the superposition of reflections.
For example, there may be a series
of discontinuities on a transmis-
sion line; the overall reflection co-
efficient at a given point is, to a
good approximation, the vector
sum of the reflection coefficients Vi 2.8 The velation hetween impedanee
that would be produced at the s andminance.
point by the individual discontinuities acting separately in the absence of
all the others. The vector addition of the component coefficients vields
good results if the components are small.  The subjeet will he considered
further in later chapters in connection with speeific problems.

The Bipolar Charts—A complex plane can he set up of which the
real and imaginary axes are associated with corvesponding components
of the normalized impedance ¢ (or normalized admittance ) just as in
the case of the reflection coefficients.  Rince the veal parts 7, of the
impedance and G/Y, of the admittance ean never be negative, only the
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half plane containing the positive real axis comes under consideration.
The impedance (admittance) is represented in this plane by a vector
from the origin. With reference to the admittance we note again that it
is taken here to be the reciprocal of the impedance. One and the same
plane serves for both impedance and admittance; Fig. 2:8 shows the
relation between the impedance and admittance points in the plane
for a given point on a transmission line.
The impedance transformation
{(z) + j tan Bl
S =0 = e Bl

does not take so simple a form in the {-plane as did the reflection coeffi-
cient transformation in the T-plane. Displacement along the line pro-
duces a change in both the magnitude and phase of the impedance.
The geometrical transformation is simplified by introducing two
families of circles: the curves |T'| = constant and the curves I'-phase =
constant. These curves are obtained from the T'-¢ transformation
= (—1)/¢+ 1) of Eq. (30). Writing T' = |T'|¢’®, we find that

R 2 X 2
o = (1) < ()
R : XY
(z * 1) * (7)
(%)
tan<I>=( - A
These can be rewritten as
R 14TV X>2_ 2Ir] ,
(#1559 G = () 53

2 2
(%) + <%(; — cot <I>> = csc? ®, (54)

respectively. It will be seen that the curves |T'| = constant and & = con-
stant are circles. The circle for a given |T'| has its center on the real
axis at a distance (1 4+ |T|2)/(1 — |T'|?) from the origin; its radius is
2|Tl/(1 — |T|?). Curves of constant [T| are also curves of constant
standing-wave ratio. By Eq. (43b), we find that the center of the circle
is at (r? 4+ 1)/2r and that its radius is (r? — 1)/2r. The circle intersects
the real axis at the points 1/r and r, corresponding to the values that we
obtained previously [Eq. (47)] for the impedance at these points on the
line where it is real. These two points on the chart thus correspond to
points on the. line at which the voltage minima and voltage maxima,

(2-30)

and
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respectively, occur. The family of circles |T| = constant is shown in
Fig. 2:9, where they are labeled according to the power standing-wave ratio
72

A circle of constant phase, ® = constant, has its center on the imagi-
nary axis at the point (0, cot ®), and has a radius |esc ®|. This second
family of cireles is orthogonal to the first, just as in the T-plane the curves
of constant |T| and constant phase are orthogonal. In the {-plane all
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I'tG. 2-9.—The bipolar impedance chart.

the constant-phase circles intersect in a point (1, 0), corresponding to
the intersection of all the constant phase lines at the origin in the I'-plane.
The two families of curves in the {-plane, taken together with their
image families in the left-hand portion of the plane, constitute a system
of curvilinear coordinates known as the bipolar coordinates; hence the
name of the chart.

The constant-phase curves are labeled in Fig. 2-9 so as to give directly
the change in the phase of T' corresponding to a displacement along the
line from a voltage-minimum point. Al voltage-minimum points must
be on the segment of the real axis between zero and unity; this is there-
fore taken as the zero-phase line. The separation between a voltage
minimum and the adjacent maximum on a line is [ = \/4, which cor-
responds to a phase shift 28/ = 180°.  All voltage-maximum points must
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lie on the real axis between 1 to <« ; hence this segment of the real axis
is taken as the phase line & = 180°.

By means of the bipolar curves the line transformation can be fol-
lowed easily. It is clear that displacement along a given transmission
line causes the impedance point in the ¢-plane to move around a circle
of constant standing-wave ratio. Displacement in the counterclockwise
sense corresponds to the same sense of rotation in the I'-plane. A half
wavelength of line produces a phase shift of 28l = 360° and hence a
complete revolution around the r = constant circle. This periodic
property of the impedance transformation was noted previously (Sec.
2:7). To illustrate the use of the chart, consider again a line in which a
standing-wave ratio r has been measured and a voltage minimum point
has been located. It is desired to find the impedance at a distance
! from the minimum point away from the generator. The starting point
is the intersection between the r2-circle and the real axis on the segment
(0, 1). We then move counterclockwise on the r2-circle until it inter-
sects the constant phase circle ® = —247; this is the desired impedance
point.

The same families of bipolar curves serve for the admittance diagram
likewise. In using the chart for admittance it must be noted that volt-
age minimum points are on the segment of the real axis (I, «) while
voltage maximum points lie on the segment (0, 1). If the voltage mini-
mum is retained as a zero-phase reference point, the real axis segment
(1, «) must be taken as the zero-phase line and the segment (0, 1) as
the 180° line. The sense of rotation about a circle » = constant remains
the same.

It should be kept in mind that the normalized impedance is dis-
continuous across a junction between lines of different characteristic
impedances; the impedance itself is continuous. On moving across such
a junction the point in both the reflection coefficient and the bipolar
charts in general will move from one circle r = constant to another. If
we pass from a line of characteristic impedance Z,, to a line of charac-
teristic impedance Z,,, the normalized impedance undergoes a change
given by

Z
(2 = Zz:g’l-

2.9. The Four-terminal Network Equivalent of a Section of Trans-
mission Line.—For many purposes, in the analysis of systems involving
transmission lines it is convenient to replace a section of line by its
equivalent four-terminal network. The elements of the network will
be derived here for the case of the lossy homogeneous line. Consider
a section of line of length /, and take the origin z = 0 at the input end;
let V,, ¢1 be the voltage and current at this end, and let Vs, 72 be the volt-
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age and current at the cutput end z = I.  From the line equations |Kgs-
(18) and (19)] we have then

2 =0: V1 = 111 + 4‘12,

. 1

1 = 7 (AL — Aw);
2 = l: ‘72 =A 1("‘” + AAQCTZ,
1

70 (A ](’Va’l — Az(“yl).

i2=:

Using the two current equations to solve for (‘11 and A, in terms of 7;
and 7z and substituting into the voltage equations, we obtain

Vi= Zxxil - Z12i2y

Vo = Zoiy — Zaots, (55)

with
Zy = Zay = Zy coth (y1), (56a)
Zvo = Zo = Zg csch ('yl) (56b)

We thus find directly that the network is linear and that the transfer
impedance coefficients satisfy the reciprocity relations. Since the line
is homogeneous, the network is symmetrical with respect to its two ends;
hence Z,; = Z:.. For a nonlossy line ¥ = j3; on substitution into the
above, the network parameters are found to be

Zy\y = Zy, = —jZ, cot 8l, (87a)
Zio = Zow = —jZ, csc Bl (57b)

TRANSMITTING AND RECEIVING ANTENNAS

2-10. The Antenna as a Terminating Impedance.—The impedance
relations between a transmitting or receiving antenna and its transmis-
sion line are of particular interest. In the following sections several
general ideas that are associated with the analysis of these relations will
be discussed. T.et us consider first the case of a line feeding a transmit-
ting antenna. It will be assumed for the present that the antenna is
isolated—in particular, that it is removed from all other antennas—so
that interactions with other systems need not be considered. The
antenna functions like a dissipative load on the line in that it extracts
power from it; part of this energy'is radiated into space, and part is
dissipated into heat in the antenna structure. TIn general, the antenna
does not absorb all of the power incident on it from the line but gives rise
to a reflected wave in the line; in effect the line is terminated by an
impedance different from its characteristic impedance. However, the
definition of the terminal impedance representing the antenna is not free
from ambiguity and requires some consideration.

It is to be noted first that the definition of a terminal impedance
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implies the identification of a driving point, cr set of input terminals, for
the antenna. In some cases, such as the half-wave dipole or rhombic
loop antennas fed from a two-wire line as illustrated in Fig. 1-2, the
structural discontinuity between the line and the radiator suggests a
driving point. This, however, is not enough; it is necessary that the
current distribution in the line be that characteristic of a transmission
line up to the assigned driving point. At long wavelengths this condi-
tion is realized with the antennas cited above: the interaction between
the antenna and line can be represented by a lumped reactive impedance
across the driving terminals in parallel with the impedance charac-
teristic of the antenna itself. At short wavelengths, however, the inter-
action between the radiating system and the line causes a perturbation
of the current distribution on the latter that may extend back over an
appreciable distance; electriéally there is no point of transition from trans-
mission-line currents to antenna currents. This is a particularly cogent
point in the case of microwave systems that make use of waveguide
lines, in which the electromagnetic fields exist in the form of a number of
modes.! A waveguide is equivalent to a two-wire line only when it is
supporting propagation of a wave in a single mode. Microwave lines
are, in fact, generally so designed that they can support free propagation
of only one mode. Nevertheless, though a single mode is incident on the
antenna, the antenna itself excites other modes, in addition to giving rise
to a reflected wave in the incident mode. It is only at points so far
from the antenna that the other modes have been attenuated to negligible
amplitudes that a waveguide is equivalent to a two-wire line. Attention
should also be called to the absence of a unique driving point in cases
where the transition from the line to the radiator is effected by a con-
tinuous structural transition. An example of this is a waveguideflaring
gradually into a horn without structural discontinuities in the walls.
In these cases, again, the transition from transmission-line currents to
antenna currents cannot be localized to a point.

The action of an arbitrary antenna as a terminal load on the line can
be specified in terms of the reflection coefficient I' measured in the trans-
mission line, at a point so far from the antenna that its only effect is the
production of the reflected transmission-line wave. At any point in the
transmission-line region an impedance (or admittance) can be determined
from the measured T, by means of Eq. (30); this can be taken as the load
impedance terminating the line at that point. Furthermore, any such
point may be regarded as the junction between the line and the input
terminals to the antenna in so far as the practical analysis of the system
is concerned.

This raises the question of the representation of an antenna by an
equivalent network. There is no unique network associated with a

t 8ee Chap. 7.
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given value of T. The load to be associated with I' at a point taken
arbitrarily as the input to the antenna may be represented by an imped-
ance in the form of a series combination of a resistance and reactance or
equally well by an admittance made up of a resistance and reactance in
parallel. In either case the resistance measures the power dissipated in
the region beyond the input terminals to the antenna; this, if the line is
lossless, is the power dissipated by the antenna in radiation and ohmic
losses. If P is the total power (averaged over a cycle) dissipated by
the antenna and 7 and V are respectively the effective current and voltage
at the input terminals, the resistance of the impedance representation is
given by

P =1'R (58a)
and that of the admittance representation is given by
_ Ve
P= (58b)

It is tempting to carry over the concept of radiation resistance, used
so extensively in the long-wavelength region. The total power dissipated
by the antenna is the sum of the radiated power P, and the power P,
dissipated in ohmic losses in the antenna structure. Correspondingly,
the resistive component of the impedance representing the antenna would
be taken as the sum of two elements: an ohmic resistance R, and a radia-
tion resistance E,. Iach element would be given in terms of the power
component by a defining relation such as Eq. (58), for example, the radia-
tion resistance by _
P. =R, (59)
In the long-wavelength region this resolution is possible because one can
define uniquely a driving point at which the antenna network can be
dissociated from the line and because it is possible, on the basis of field
theory, to set up an unambiguous network that is characteristic of the
antenna itself. In the case of the dipole and loop antennas referred to
earlier the network is a series combination of a resistance and reactance.
However, in the general case, where the driving point is merely an arbi-
trary reference point on the line, the antenna network cannot be dissociated
from the line, and either an impedance or an admittance representation
can be used. In the admittance representation the resolution of R into
an ohmic component R, and a radiation component R, (if it is to be
made at all) must place the two components in parallel. In view of the
transformation properties of the line, it is evident that these resistances
will be functions of the position of toe reference point.

The practical significance of the reference point and of the “antenna
impedance” 74 determined from the measured value of T' at that point
may be illustrated by reference to the matching problem. Let [ be the
length of line from the reference point (regarded now as the terminal
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point of the line) to the generator. It follows from Secs. 2-4 and 2.9,
the line will transfer maximum power from the generator to a terminal
load of impedance

2 2
Z, = jZy cot Bl + Z§ esc? fl

7% & 37, oot B (60)

where Z; is the internal impedance of the generator and Z, is the char-
acteristic impedance of the line. If the “antenna impedance” Z. is
different from Z., it is possible to introduce a reactive network between
the input terminals of Z4 and the line, which (at one frequency at least)
transforms Z, into Zg; this network will effect maximum-power transfer
to the antenna.

It is to be noted that in microwave systems another matching prob-
lem exists: The characteristics of the generator are such that thereflected
wave in the line must be eliminated. This requires that the antenna
impedance Z, be transformed into Zc—in general a different transforma-
tion from that required by the maximum-power-transfer condition. In
these systems the generator must be independently matched to the line;
the generator internal impedance Zg is transformed into Z, with the
result [¢f. Eq. (60)] that the maximum-power condition then coincides
with the condition for eliminating the reflected wave in the line.

2-11. The Receiving Antenna System.—The equivalent circuit repre-
sentations used in discussing receiving antennas also need examination.
Consider an arbitrary antenna—it may be a center-driven dipole, a horn,
or a combination of such elements with reflectors and lenses—feeding
into one end of a transmission line that at the other end is terminated
in a passive load impedance. (That is, the receiving circuit is free from
generators.) When an external electromagnetic field falls on the receiv-
ing-antenna system, the interaction between the antenna and the field
gives rise to a wave in the line. The antenna may be regarded as a
device that transforms energy carried by a free wave in space into energy
carried by a guided wave on the transmission line. From the point of
view of the terminal load, however, the antenna functions as a generator,
and it is customary to replace it by a generator in discussing the efficiency
of the receiving system as it depends on the antenna, line, and load
impedances. It is our purpose to discuss the nature of the equivalent
generator. In this connection the problem of modes in microwave sys-
tems again arises. The field excited in the line by the antenna always
consists of a number of the modes that are possible in the given line.
It will be assumed that the line is designed to support free propagation
of a single mode and that the length of line between the antenna and
load is more than sufficient to attenuate the other modes to negligible
amplitudes; there will then be an appreciable region over which the guide
is equivalent to a two-wire line.
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Before iscussing the equivalent generator representation, it will be
well tc consider briefly the physical processes of the interaction between
the receiving system and the external field. For this purpose it will be
assumed that an essentially plane wave from a very distant source is
falling on the receiving antenna. In the neighborhood of the receiving
antenna the incident wavefront may be regarded as a plane surface,
over which the electric and magnetic field intensities are sensibly con-
stant in magnitude; furthermore, the electric and magnetic field vectors
lie in the plane, normal to the direction of propagation of the wavefront.!
We shall assume for the moment that the load impedance terminating the
line is equal to the characteristic impedance of the line. Under the action
of the incident wave a distribution of currents and charges is excited in
the antenna structure; the currents are communicated to the transmission
line and give rise to a wave in this which proceeds toward the load.
Since the load is matched to the line, this wave is completely absorbed by
the load. The current and charge distribution existing on the antenna
under this matched-load condition will be designated as the primary
induced distribution.

Consider now an arbitrary load impedance. This will absorb only
part of the wave excited by the primary induced distribution and will
give rise to a reflected wave, which will proceed to the antenna and excite
there a charge and current distribution, as if the system were a trans-
mitting system. This new distribution of charges and currents will be
termed a secondary induced distribution. The reaction of the antenna
to the reflected wave depends on the impedance of the antenna relative
to the line, as discussed in the preceding section. If the antenna imped-
ance is equal to the line characteristic impedance, there will exist in the
line only the two component waves already mentioned. On the other
hand, if the antenna is mismatched, there will occur a process of multiple
reflection between the antenna and the load. The resultant secondary
induced distribution on the antenna is the sum of the component distribu-
tions arising from the multiple reflections between the antenna and load;
its magnitude and phase relative to the primary distribution are deter-
mined by the antenna and load impedances and the length of line between
them., It will be recognized that since the component waves are all of
the same frequency, the net result inside the line is two waves, one—the
resultant incident wave—traveling toward the load, and the second—
the resultant reflected wave—traveling away from it. Their relative
s.mplitudes are given by the reflection coefficient corresponding to the
impedance mismatch between the load and the line.

Since the primary and secondary induced distributions on the antenna
both vary with time (with a frequency equal to that of the incident
wave), they radiate and set up an electromagnetic wave in space. This

1 A general treatment of clectromagnetic fields is given in Chap, 3.
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wave is known as the scattered wave. The interaction between the
receiving system and the incident wave is completely expressed in the
relation between the scattered wave and the incident wave fields. There
are two interaction effects: (1) energy is taken from the incident wave and
dissipated in heat in the antenna, the line and the load, being thus com-
pletely lost to the field in space, and (2) energy is taken from the incident
wave and reradiated into all directions about the antenna. The first
effect is known as absorption; the second as scattering. If the dimensions
of the antenna are large compared with the wavelength, the interaction
between the scattered wave field and the incident wave is such as to
give rise to a rather sharply defined shadow region behind the antenna,
that is, on the side of the antenna away from the source of the incident
wave. In this direction the scattered wave set-up by the induced dis-
tribution on the antenna is out of phase with the incident wave; the
destructive interference between the two fields results in the removal of
energy from the incident wave. This energy includes both the absorbed
and scattered energy.! 1If the dimensions of the antenna are of the order
of magnitude of the wavelength or are small compared with it, there is
no sharply defined shadow region. The fundamental process is the same,
however, in that destructive interference between the scattered wave and
the incident wave in various directions removes energy from the latter
wave; this energy is in part absorbed and in part scattered by the antenna.

The interaction between the antenna and the incident wave may be
visualized by thinking of the antenna as presenting a certain interception
area or cross section to the incident wave and removing from it all the
energy incident on the cross section. The total interception area is
resolved into two parts: the absorption cross section and the scattering
cross section. Reference was made to cross sections in See. 1-2. To
repeat: Let S be the power intensity, that is, power flow per unit area
of the incident wave, Pa, and P, the absorbed and scattered powers,
and A4, and A4, the corresponding cross sections; then

Pabs = Ars, (61(1)
Perat = AsS (611))

The cross sections are functions of the aspect presented by the antenna
to the incident wave. The reader is referred to Sec. 1-2 for the definition
of the receiving pattern.

The definition and measurement of the absorbed power is unambiguous
in principle. In microwave systems the power dissipation in the antenna
and line is generally small compared with that in the load; hence the

1 The significance of the shadow has been discussed in great detail for the case of a
plane wave incident on a sphere by L. Brillouin, *“On Light Seattering by Sp..-ves,”

Applied Math. Panel Reports, NDRC, Columbia University, 87.1, December 1043, and
87.2, April 1944,
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absorption cross section—or receiving cross section—can be evaluated
with small error from the power absorbed by the load. The scattered
power, however, is not directly measurable, and its theoretical evaluation
is subject to ambiguities. Although electromagnetic fields are additive,
their energies are not additive, the resultant energy being modified by
the interaction between the fields. Consequently the energy flow com-
puted for the scattered wave field, regarded as isolated from the incident
wave field, does not necessarily
. Bl . B!

represent the energy removed iy tansyr g7y tan
from the latter and reradiated in
all other directions. This is par-
ticularly true when the antenna
dimensions are comparable to the
wavelength and the interaction
between the scattered and inci- d
dent waves. which results in re- Fia. 2410.—(.3ilr(',uit representation of the

’ receiving antenna system.
moval of energy from the latter,
cannot be localized to a well-defined shadow region.

The equivalent circuit representation of the receiving system is based
on the fact that the antenna functions like a generator in so far as the
load is concerned. In replacing the antenna by an equivalent generator
it is generally assumed (1) that for a given aspect of the antenna toward
the incident wave, the emf of the generator is proportional to the field
intensity of the wave and (2) that the generator has an internal impedance
equal to the input impedance which the antenna presents to the line when
used as a transmitter. The complete circuit is shown in Fig. 210, where
the line, assumed to be nonlossy, is replaced by its equivalent T-section;
Za and Z. are the antenna and the load impedance respectively. It is
evident that this circuit representation involves the same difficulties as
the representation of the antenna by a load impedance—the definition of
Z4 and of the input terminals to the antenna. When a driving point can
be localized in the transmission problem, the same point also serves for
the output terminals of the generator feeding the line in the receciver
problem. More generally, when the input terminals to the antenna
can be defined only as an arbitrary reference point on the line, the gen-
erator voltage must be a function of the position of that point; it is not
a priort evident that the power relations between the antenna and load
calculated on the basis of the equivalent circuit are independent of the
choice of antenna terminals. It will be shown in a later section that the
results for the absorption cross section are independent of that choice.

It will be noted that in Iig. 2-10 power is dissipated both in the load
impedance Z. and in the internal impedance of the generator. The
power dissipated in Z, is interpreted as the power absorbed from the
incident wave by the antenna and delivered to the Joad. The power

&<
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dissipated in Z, is frequently interpreted as the scattered power—the
power absorbed by the antenna (dissipated in its ohmic resistance) plus
the power reradiated. Neglecting the ohmic losses, the power dissipated
in Z4 would thus measure the scattering cross section. It will, however,
be seen in Sec. 2:12 that the power dissipated in the internal impedance
of the equivalent generator has no direct relation to the energy reradiated
by the antenna and in general cannot be used in discussing the scattering
cross section. Two important cases in which the above interpretation
is valid are that of the dipole antenna and the small (compared with
wavelength) loop antenna. In these antennas, the current distributions
induced by the incident wave under conditions of matched load termina-
tions are the same as the currents excited on the antennas when they
are driven by the line in transmission.

The equivalent circuit representation can thus in general be used only
for the treatment of absorption. It is readily found that the power
delivered to the load by the generator is given by

1]Vf2 81 jZocscﬂl(ZL -|—jZ0tan%l>
Pa, =3 ~DL2 Re {jZotan & — 3 , (62)
71 +jZotan§ — jZocse Bl
where »
. . s\ |
s jZocse BL Zo + 32, tanE
D2 = ZA + ]Zu ta.n—2— - Bl : (620')
Z, + jZ, tan§ — jZ, csc 6l

The condition for maximuru-power transfer from the generator to the
load in the equivalent circuit gives the impedance relations required for
maximum absorption cross section: the load impedance Z. must be
such that its impedance, transformed through the T-network of Fig. 2:10,
is equal to the complex conjugate of Z,. It wasnoted before that if a con-
jugate impedance relationship exists across any point in the line, it
exists at all points on the line; consequently the load impedance deter-
mined by the conjugate condition is independent of the arbitrary point
taken to be the input terminals of the antenna.

It follows from Eq. (62) that the absorption cross section is zero when
the line is terminated in either a short circuit (Z; = 0) or an open cir-
cuit (Zr = «). In each case the reflection coefficient of the termination
has the magnitude unity, and all power incident on the termination is
reflected. It is of interest for these cases to compute the power dissipated
in Z. on the basis of the circuit representation. We find

Vo
2[Z. — jZ, cot B[

2

P., =

ReZi,,  (Z: = =), (63a)
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[Vol?

Pa = 2/Z4 + jZo tan B

Re ZA, (ZL = 0) (63b)

In both cases there are certain lengths of line

[n?)‘ for Zn = o, (T—g\) — (2) for ZL = 0, n being an integer]

for which the power given by these equations is equal to zero. For
cases in which the dissipation in Z, may be interpreted as scattered
power, this means that the scattering cross section vanishes for the
stated terminations and associated line lengths. This can be under-
stood readily from physical considerations. Since the reflection coeffi-
cient of the load is unity, the voltage impressed across the driving point
of the antenna by the reflected wave in the line is equal in magnitude
to that impressed by the external incident wave. The current distribu-
tions excited on the antenna by the two waves are the same except for
phase; hence, by suitable adjustment of the line length, the primary
and secondary induced distributions on the antenna can be put 180°out
of phase, with the result that they give rise to no resultant scattered
wave. The absorption and scattering cross sections are then both equal
to zero. Similar phenomena can be obscerved with more general types
of antennas. The phase between the primary and secondary induced
antenna distributions is determined by the load impedance and the line
length. If the load reflection coefficient is unity, the component dis-
tributions on the antenna will be comparable in magnitude, and by suit-
able adjustment of the line length their relative phase can be adjusted
to give a minimum scattering cross section.

2:12. The Transmitter and Receiver as a Coupled System.—The
preceding sections treat the transmitting and receiving antennas as iso-
lated systems and neglect the significant feature of the interaction between
them. Any discussion of a transmitting pattern implies the presence
of a receiving antenna to explore the field; conversely, a discussion of a
receiving antenna assumes the existence of a radiating system. The
interaction between the transmitter and receiver is a result of scattering.
Consider a transmitting antenna that, when completely isolated, is
matched to its line. When a receiving antenna is introduced into the
field of this transmitting antenna, it gives rise to a scattered wave.
This, when intercepted by the transmitting antenna, in turn gives rise
to a wave transmitted down the feed line of that antenna. The net effect
is that the transmitting antenna no longer presents a matched impedance
to its line. The transmitting antenna also in turn gives rise to a scat-
tered wave that is partly absorbed by the receiving system and partly
rescattered. The interaction between the two antennas is thus due to
multiple scattering and absorption.
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From the point of view of the transmission lines, the antennas and
the external space form a network that couples the lines together. In
Fig. 2:11, A and B represent the transmitter and receiver respectively,
and O and O’ are arbitrary but fixed reference points on the respective
lines. It will be assumed that there is no activated generator other
than the one feeding the transmitter 4; the network between O and O/

Zy=2y,- 2y, 232y~ 2yy
0
9 '
]
A
I'1g. 2-11.—Jour-terminal network representation of the coupled transmitter-receiver.

is passive. It will also be assumed that the network is a four-terminal
network in the sense of Sec. 22, Thus the voltages and currents Vi,
i1 at O and V, 12 at O/, are linearly related:

Vi = Zuty — Zists;
’
Vo= Zut, — Zaﬂé;

and the transfer impedance coefficients obey the reciprocity condition
Z1s = Zs. The transfer impedance expresses the coupling between the
antennas. The basis for these assumptions concerning the properties
of the network is discussed in Secs. 2-16 to 2-18.

The network may be replaced by an equivalent T-section in the
manner discussed in Sec. 2-2. This has been indicated in Fig. 2-11.
The impedance coefficients are functions of the antennas, their relative
configurations, the properties of the external medium and of the trans-
mission lines, and the distance between the antennas. In the case of
waveguide lines, the reference points O and O’ defining the network
terminals must be at such distances from the antennas that all modes
other than that for which the line is designed have negligible amplitudes.

As the distance R 45 between the antennas increases, the importance of
multiple scattering diminishes. The amplitude of the wave returning
to a given antenna as a result of a single scattering process is attenuated
by a distance factor (R.s)~%; that due to stage multiple scattering process
is attenuated by a factor (Ras)~% In the limit R4z = « the coupling
between the two antennas vanishes—the terminals O and O’ are isolated
from each other. In this limit the impedance arm Z,; of the T-section
becomes a short circuit:

Iim Z;; =0. (64)

Raip— w
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Also, in this limiting case, Z, and Z. reduce to the input impedances
Z% and Zj (referred to O and O’ respectively) of antennas A and B in
their isolated states. When R4z is large but not infinite and A is trans-
mitting, the scattered wave from B has a small amplitude when it reaches
A; the input impedance of A is but slightly different from Z$. If the
impedance at O is sensibly independent of the position and orientation
of antenna B, we have one of the requisite conditions under which B,
acting as a receiver, may be considered to be measuring the transmission
pattern of A. 1In this situation the antennas are weakly coupled; the
transfer impedance is negligible in its effect on the transmitting antenna.
As concerns the receiver, however, the transfer impedance is not negligible,
for it represents the transfer of energy from the transmitting antenna to
the receiving system. The same considerations apply when B is trans-

0 [0
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1. 2:12,—O0n the receiving system circuit.
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mitting and A4 is the receiver. For the weakly coupled case we may then
set Z, and Z, equal to the respective values at Biz= « and to a first
approximation write
Zn = Z9 + Zys, (65a)
Zyy = Z§ + Z1s. (65b)

This coupled network representation provides the correct approach
to the equivalent circuit of the receiving system discussed in Seec. 2-11.
That case was actually one of a weakly coupled transmitter-receiver
system. Without loss of generality we may consider a generator of emf
Vs and internal impedance Z; to be applied directly to the terminals at
O and a load impedance Z to be applied directly at O’ (Fig. 2-12). By
Thévenin’s theorem (Sec. 2'4) the system is equivalent to one in which
the load is connected to a generator producing an emf

VeZya

7 Deanie = e 12
(V&) eauiv Ze ¥ 70+ Zn (66)
and having an internal impedance
p 0 '
(Z)eaiv = Z3 + 223 + Zo) (67)

Zo+ 20+ Zs

In obtaining these results the weak-coupling approximations for Z;, and
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Z., given by Egs. (65) have been used. The receiving antenna is thus
represented by an equivalent generator; the emf of the generator is
proportional to the amplitude of the incident wave (which is propor-
tional to V). The effect of the orientation of the antenna with respect
to the wave is contained in the functional dependence of the transfer
coefficient Z,, on orientation. The internal impedance differs from Z3
by the small quantity Z.; neglecting the latter, we have the result
(assumed previously) that the equivalent generator impedance is equal
to the input impedance of the antenna when it is transmitting. The
present analysis shows explicitly that the equivalent circuit applies only
to absorption, for Thévenin's theorem is applicable only to the treatment
of the power transferred to Z:. In general the power dissipation com-
puted for the equivalent generator impedance is not equal to the power
dissipated in the network between V¢ and the load; hence it cannot be
interpreted as scattered power.

2.13. Reciprocity between the Transmitting and Receiving Patterns
of an Antenna.—The four-terminal network analysis leads to the very
important theorem that the transmitting and receiving patterns of an
antenna are the same. In this connection the meaning of a pattern must
be understood from the practical standpoint of the coupled system.
One condition has already been stated: In the case of the transmission
pattern, the distance from the transmitter to the receiver must be so
large that the former is not affected (within the limits of measurements)
by the wave scattered from the latter. In addition, however, one must
consider the interactions between the receiving antenna and objects in
its immediate neighborhood. Multiple reflection and scattering will take
place between the receiver and such objects; the receiving antenna con-
sists, in fact, of the antenna proper together with all neighboring objects
with which its interactions are significant. If the receiving antenna is to
measure the field at a point, its directive properties must be such that all
such interactions are negligible. These interactions at the receiving
antenna are similar to but are to be distinguished from the interactions
between the transmitter and surrounding objects such as ground. The
receiver measures the resultant of the field produced by the transmitter
and any neighboring objects that interact with it; these together form,
in fact, an extended radiating system.

In Fig. 2:13, 4 represents the antenna under consideration. In taking
a transmitting pattern a receiver B is, in principle, moved over a large
sphere about A, and the relative amounts of power absorbed by the load
terminating the line B in successive positions give the transmitting
pattern of 4. Conversely, the receiving pattern of A is obtained as the
relative amounts of power absorbed by a load terminating A when it is
receiving from the antenna B at successive positions on the sphere. In
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accordance with the usual experimental conditions, no restrictions are
made as to the generator impedance or load impedance; the only require-
ment is that they remain constant in the course of taking a given pattern.
The load in the receiving system will again be taken to be applied directly
to the reference point O or 0.

There is an equivalent four-terminal network between O and O’ for
every position of B. Counsider the

\_)'
transmitting pattern. If Z; is the \
load impedance at O, the network AN N
equations give (without approxi- 2 (B)
mations) \
. . \
1021 = Vo = Zigty — Zasls \
\
or 0 Vo

o Zn , ' I

1 = mh. (68) :j@ 1
The currents have the usual sig- ‘l
nificance, indicated in Fig. 2-11.

. . F1a. 2:13.—On the pattern reciprocity
The power absorbed in the load is theorem.,

Z12

_1 2
Paba—QIh[ m

|2 Re Zs. (69)

Since the coupling is weak, the dependence of the input current ¢ on the
position of antenna B is negligible. In the denominator of Eq. (69),
the coefficient Z22 may be replaced by Z9, for it follows from the weak-
coupling approximation of Eq. (65) that this introduces an error of the
magnitude (Re Z12)®. For two successive positions of B the ratio of the
absorbed powers is given by

(Pavs)r |74}

Par)2 | Z12l3 (70)

The transmitting pattern is thus determined by the transfer impedance
coefficient alone.

If now B is transmitting and the power absorbed by a fixed load
terminating A at the point O is measured, the result should be the same
as in Eq. (69) except that 7; is replaced by the input current 7, at O’
and Zo. is replaced by Z1;. The variation in power with the position of
B (assuming again weak-coupling conditions) is then likewise given by
the transfer impedance alone—in fact, by Eq. (70). Hence, subject to
the condition that the transfer tmpedance coefficients obey the reciprocity
relation, it is found that the transmitting and receiving patterns of an antenna
are the same. If then G(8,¢) is the gain function of the antenna as a
transmitter in the direction 6, ¢, the absorption cross section A.(6,¢)
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presented by the antenna to a plane wave incident from the direction 8,
¢ is

4:(0,¢) = G(6,9)A,, (71)
where

- 1 .
A, = I‘;F/ / A.(6,¢) sin 6d0de¢ (72)

is the average cross section over all aspects. The practical result of the
reciproeity theorem is that no distinction need be made between the
transmitting and receiving functions of an antenna in the analysis of
design problems.

2-14, The Average Cross Section for a Matched System.—In conse-
quence of the reciprocal relation between the transfer impedance coeffi-
cients Zi2 = Zs, the four-terminal network representation of the
transmitter-receiver system obeys the Rayleigh theorem of Eq. (11).
This, taken together with the pattern reciprocity theorem established in the
preceding section, leads to a further important result: The average absorp-
tion cross section of recewing system tn which the load is matched to the
antenna tmpedance ts a universal constant. The demonstration given here
applies strictly to the case in which the ohmic losses in the antenna and
line are negligible.

Consider again a weakly coupled transmitter-receiver system made
up of antennas A and B, with input terminals at assigned reference
points O and O’ as in Fig. 2-11. Let the input impedarces of the respec-
tive antennas be

Z? = ]fA + an,
Zg = RB + ]XB

For a weakly coupled system these are but negligibly different from the
input impedances at O and O’ when the respective antennas are trans-
mitting. Let us apply a generator of emf V; and internal impedance
Z%*, equal to the conjugate of the impedance of antenna A, across the
terminals at 0. The receiving system is assumed to be so matched that
the load impedance across O’ is Z3*. If 4, is the current at O’, the power
absorbed by the receiver is

Pup = }is® Re Z3*F = §1|*R5. (73)

This power can be computed in another way. Let P. be the total
power radiated by the antenna A4 ; the power radiated per unit solid angle
in the direction of B is (P./47)G4s, Gap being the gain function of A4
in the direction AB. The absorption cross section presented by B to
the wave from 4 is by Eq. (71) equal to Gu4A,5, Gxa being the gain func-
tion of B in the direction of A. The solid angle subtended by the cross
section at A is GpsAd.s/R2,, whence the power absorbed by B is
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_ PuGutiadn
4r R2,

Pas (74)

However, P4 is equal to the power supplied to antenna 4 by the generator:

_ Vel

= RR (75)

Collecting these results, we obtain

GAHGBAfirB = EI{EZI[’}}?%fRARB
6]

(76)

If the situation is reversed so that B transmits and A receives, with a
generator of emf V¢ and internal impedance Z* applied across O’ and
a load impedance Z{* across O, we obtain by the same calculation as
before:

- (222
GABGBAA,,A = M‘ugjfﬁARB
G

(77
In this case 7; is the current at the terminals at 0. By the Rayleigh
theorem we have
1] = is; (78)
hence, on comparing Eqgs. (76) and (77), we find
A = A.5; (79)

The average cross sections of the two antennas are equal. Since the
antennas are purely arbitrary, this means that the average cross section
of a matched system is a universal constant.

The evaluation of the constant requires at least one detailed analysis
of the interaction between an antenna and a plane wave on the basis of
electromagnetic field theory. The reader is referred to Slater! for such
a treatment of the electric dipole antenna. It is shown there that the
value of the constant is

A, = (80)

The cross section A,(8,¢) presented by an antenna to a plane wave inci-
dent from the direction 6, ¢ is therefore

4,0,6) = G(8,9) X (81)

2:16. Dependence of the Cross Section on Antenna Mismatch.—The
matched-impedance condition between the antenna and the load—that
the load impedance be the conjugate of that of the antenna—is the same

1], C: Slater, Microwave Transmission, McGraw-Hill, New York, 1942. Chap. VI.

{ ""K ' b
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as the condition for maximum-power transfer from a generator to a load.
This condition can be realized by separately matching the antenna and
load to the characteristic impedance of the transmission line if the char-
acteristic impedance is real, as it is for a nonlossy line. The line-matched
system is of particular interest in the study of microwave antennas and
is generally taken as a reference system, since transmitting antennas are
required to be matched to the line. Consequently, it is of interest to
determine the effect of a mismatch
between the antenna and the line
on the absorption cross section.
The functional dependence of
I ! the cross section on line mismatch
! [ is of considerable importance in
} : 2z, the measurement of the gain of
: : microwave antennas. It may be
| : desired, for example, to study the
0 0 dependence of the gain on configu-
(@) ® rational parameters, such as the
I-'Iu._ 2:14.—0On _the dep(_rndence of the relgtive positions of a radiator and
absorption eross section on mismateh: (a) the . .
mismatched system; (b)) the line-inatched & reflector in a scanning antenna.
553'ste;1 in which a network transforms ZA Itis impractical in such investiga-
e S tions to mateh the antenna to the
line in each configuration; rather, a line-matched detector is used through-
out, and the results are corrected for the antenna mismatch of the given
configurations.
Consider the receiving system in Fig. 2:14, composed of an antenna
A feeding a line terminated in a load equal to the characteristic impedance
Z, of line. Let T be the reflection coefficient of the antenna (in trans-
mission) at a given reference point O and Z, = R4 + jX 4 the associated
impedance. We may replace the antenna by an equivalent generator
of internal impedance Z4; the emf of the generator will be designated by
V.. Consider now two cases: (1) Fig. 2-14a, in which the antenna is
mismatched and feeds directly to the line at O, and (2) Fig. 2-14b—the
line-matched system—in which a lossless network has been introduced
between the antenna terminals at O and the line to transform the antenna
impedance into Z, at the output terminals O’. It is readily verified that
such a network which transforms the impedance Z 4 at O into Z,at O’ trans-
forms the impedance Z, at ( into the complex conjugate Z% at 0. Case b
therefore meets the conditions of Sec. 2-14. The power absorbed in the
load in the two cases is
Case a:

Matching
network

_ve Z
(Pabs)a - i2* |7Z07‘*: 'Z'Ig’ (82)
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Case b:

5

1 V.
(Pabs)b = Q I*ZA’_*_ ZZ‘T" Re Z4

V2. 1
2 4R,

(83)
The ratio of the power absorbed in the two cases is the ratio of the respec-
tive absorption cross sections:

(ADws _  AZoR4
Ao~ 120+ Zap

(84)

Here (A.)o designates the cross section of the matched system.
The antenna impedance can be evaluated in terms of the reflection

coefficient T'. Thus
(14T
2e-na(150),

Ra= 3@t zp = 200,

and

Substituting into Eq. (83), we obtain the desired result:
(A)mis = (A-)o(l — [T'[3). (85)

The decrease in cross section—or reception efliciency—is precisely the
same as the reflection loss introduced by the mismateh on transmission.
Also it will be noted that the mismatech depends only on |I'[?; hence the
result is independent of the choice of the reference point O taken as the
input terminals to the antenna.

2:16. The Four-terminal Network Representation.—This and the
following sections summarize the considerations underlying the postulate
(SBec. 2-12) that the transmitter-receiver system is equivalent to a four-
terminal network between the respective transmission lines. Use will
be made of results proved later in Chaps. 3 and 7. The treatment is
formulated primarily for microwave systems in which the transmission
lines are waveguides. The systems are assumed to be ideal, in the sense
that ohmic losses in the lines and the antennas are negligible.

Consider a pair of antennas A4 and B, each of which is fed from a
waveguide, as shown in Fig. 2-15. It is assumed that the guides are
designed to support free propagation of a single mode only. The refer-
ence planes O and O’ which serve as the input terminals to the antennas
are perpendicular to the respective guide axes and are taken in the trans-
mission-line region of the guides, where only the freely propagated mode
has an amplitude significantly different from zero. We shall consider
the closed surface S made up of the surface O inside the guide A, the

T
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interior surface of the guide, the surfaces of the conductors comprising
the antenna, and finally the exterior surface of guide .t; this encloses the
A-system completely. A similar surface 8" encloses the B-svstem. We
shall be concerned with the electromagnetic field in the region ¥ bounded
by a sphere of infinite radius and by the surfaces S and S’

Guige

0’

o

(@) ()
Fi1c. 2:15.—O0n the four-terminal network analysis of the transmitter-receiver system.

It will be assumed that there are no generators in the region V. As
regards antennas A and B, either we may have the one transmitting and
the other receiving or generators may be applied to both antennas simul-
taneously. However, the particular case involved is of no concern, since
we are interested in the gencral nature of the relation between the
tangential components E,, H; of the field over the plane O in guide A
and the tangential components E,, H» over the plane ' in B.

The magnitudes of the tangential electric and magnetic fields are
determined by voltage and current parameters V and 7, respectively,
which are analogous to the voltage and current in a balanced two-wire
line. In order to set up a four-terminal network representation, we must
show that the relation between the voltage and eurrent parameters V,,
7, at the plane O and the parameters Vo, 7> at O’ is linear:

Vi= 2yt — szl.z;

, . . 80
Vo = Zoty — Zaslo. ) ( ))

To validate the various reciprocity theorems developed in Secs. 2-13 to
2-15 we must then show that the transfer impedance coeflicients satisfy
the reciprocity relation

le = Zgl. (87)

The remainder of this section will concern itself with the definition
of the- voltage and current parameters and an exposition of certain of
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their properties that are needed in developing the proof of the four-
terminal network representation. The latter subject proper will be
treated in the following section, and in Sec. 2-18 the reciprocity relation
between the transfer impedance coefficients will be established.

The fields in a waveguide are functions of position both over the
cross section of the guide and along its axis. It will be shown in Chap. 7
that the tangential components of the field over any cross section of a
guide, for a given mode, have the form

EMDK = Vg(]?,y), .
thng = 1‘1’1(.’17,‘7/), (88)

where the coordinates z, y refer to position on the cross-section plane.
The functions g(z,y) and h(z,y) are characteristic of the given mode and
satisfy the relation

[ i lg) xnEIdS = 1. (880)

The quantities V and ¢—the voltage and current parameters, respectively
—are functions of position along the guide axis. If position along the
latter is designated by z, the voltage and current parameters for a general
field of a given mode take the form

V = Ve 4+ V_etie, (89a)
i= To(Vie# — V_gtits); (89b)

that is, the general field is made up of two waves traveling in opposite
_ directions along the guide axis, the subseript + in Egs. (89) referring to
the direction of propagation of the component wave with respect to the
positive z-direction. The quantity T, is a constant, characteristic of the
given mode. Thus the voltage and current parameters obey the same
equations as do the voltage and current in a two-wire line, of charac-
teristic admittance Tp. Asin the case of the two-wire line the amplitudes
V. and V_ are determined by the boundary conditions at the input and
terminal points in the guide.

If V, and V; are the voltage parameters of two fields of the same
mode, for different boundary conditions on the line, and 7, and 75 are
the respective current parameters, it follows from Egs. (89) that the
fleld with a voltage parameter

Vy = maVa + msVs (90a)
has a current parameter

'L.-y = maia + Mﬂig. (90b)
This leads at once, by virtue of Eqs. (88), to the corresponding property
of the electric and magnetic fields: Let E,, H, and Ez, Hg be two linearly
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independent fields, of the same mode; then, if we construct the field
E, = mE, + msE;s, (91a)

where m, and ms are both different from zero, the magnetic field H,
associated with E, is correspondingly

H, = m.H, + msHs. (91b)

This relation between the fields is of fundamental importance to the
discussion in the following section.

2-17. Development of the Network Equations.—We may now pass to
the details of the four-terminal network problem. The procedure is to
consider the relation between the fields within the respective guides
and the fields in the external space, thereby arriving at a relation between
the fields in the two guides A and B. For this purpose the interior regions
of the guides are thought of as connected with external space to form a
composite region V' bounded by the surfaces § and S’, as was outlined
in the previous section and illustrated schematically in Fig. 2-15,

Every set of values of electric and magnetic fields E;, H; over O and
E;, H: over O (and hence voltage and current parameters Vi, 4y, Vs, 13)
is associated with a field E, H in the region V. Consider three such fields
that are not simple multiples of one another:

(Eln) H]a; EZa’ HZa; Ea’ Ha)’
(E1sy Hig; Egg, Hog; Eg,y Hp),
(Elw Hl‘r; E27) H2'y; E'n H'y)'

It follows from Eq. (88) that over the planes O and 0’ the successive
fields differ from each other only in their voltage parameters. (Only
a single mode exists in each guide in the regions of the reference planes.)
Any one of the three fields can be obtained as a linear combination of the
other two, with coefficients m, and mg which satisfy the relations

Viy = maVie + mgVig, }
V2-y maVZa + mﬂV2ﬂ‘

By virtue of Eq. (88) the voltage parameters can be replaced by the elec-
tric flelds Eio . . . Esp. By Eqgs. (91), the associated magnetic fields
follow the same law of resolution:

Hly = dela + mﬂHw, }

Hz‘y = mqu,, + MﬁHzﬁ.
This resolution can be effected regardless of the behavior of the fields
throughout the region V. However, it is meaningful only if the field
E,; H, is the same linear combination of the fields E,, H, and E;, H;
throughout V as it is over the reference planes. that is, if

E, = m.E, + msE;. (92¢)

(92a)

it

(92b)
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Proof of Eq. (92¢) follows from the uniqueness theorem of the elec-
tromagnetic field.! The application of the theorem, however, involves
restrictions on the fields. The medium in the region V is characterized
by three constitutive parameters: the conductivity ¢, the electric induc-
tive capacity e, and the magnetic permeability .2 These in general vary
from point to point and are functions of frequencies. In special cases
(such as ferromagnetic media) they are functions of the field intensities;
such nonlinear regions are excluded in the formulation of the uniqueness
theorem. Since the region V includes virtually all space, ferromagnetic
media cannot be simply excluded; we must instead impose the restric-
tion that the fields set up by the antennas be such that their amplitudes
are negligible in the neighborhood of such media. Subject to this
condition, the uniqueness theorem states that in a region V which is free
from generators the field is determined completely by the values of
n x E over the boundary surfaces S and S’. The reader is referred to
Stratton for the proof. The same technique that is employed in the
development of the uniqueness theorem leads to the following superposi-
tion principle: If E, is the field in V corresponding to the boundary condi-
tion n x E = F, over S and S’ and E, the field with the boundary
condition n x E = F;, then the field E, associated with the boundary
conditions

n x E = m,F, + m,Fy,

mq and m, being constants, is
Ec = maEa + mpE,.

It will be noted that since the waveguides and antennas are all ideal
conductors, all fields E, H, with which we are concerned in the region V,
satisfy the same boundary conditions

nxE=0
over the surfaces S and S’ exclusive of the cross sections O and 0’.  Over
the regions O and O’ the tangential component of E assumes prescribed
values E, and E, respectively. Hence the resolution of E;, and Es, in
Eq. (92) becomes, in fact, a resolution of the tangential components of
the field E, over 8 and S’ in terms of a pair of linearly independent fields:
n xE, = m.,(n x E,) + mz(n x Ep).
From the superposition theorem we have then that everywhere in V
E, = m,E, + mzEs,
which was the desired result stated in I9q. (92¢). Thus given any pair

! See for example, J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York,
1941, Sec. 9-2.
2 Cf. Chap. 3, Sec. 3-2.
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of linearly independent fields over the reference planes O and 0’, all other
fields may be expressed as a linear combination of the two, the law of
combination holding for all points ir the region V.

It is convenient to take as the basic set of linearly independent fields
the two fields corresponding to short-circuit terminations over the plane
O’ and the plane O respectively. Consider first the short-circuit termina-
tion over O, and let the fields over O be designated by Eiay Hi,, the fields
over O' by Eszy Hooy let Vie . . . 72, be the corresponding voltage and
current parameters. Since the short-circuit means that O’ is the surface
of the perfect conductor, we must have E;, = 0, and hence V., = 0.
Of the three remaining quantities, one may be regarded as an independent,
variable, being adjustable, for example, by a generator applied over the
surface O. Let Vi, be the independent variable. From Eqgs. (89) it
follows that for fixed conditions in V, that is, a prescribed termination in
antenna B and hence a fixed terminal condition in guide 4, the cutrrent
parameter 71, varies directly with the voltage parameter Vi,:

Vie = allila, (93)

where a1, is a constant independent of the field amplitude. Furthermore
since O’ is short-circuited, the field in ¥V must satisfy the condition
n x E = O over all of 8, for all values of E;,. From the superposition
principle it follows then that the field at all points in V is proportional
to the magnitude of Ei.; in particular, then, the current s, is proportional
to Vla:

Toe = baVia = baallilay (94)
with b, also a constant independent of the field amplitude.
Similar relations are obtained for the case of a short-circuit termina-

tion over O. Letting Vs, 715, Vg, 726 be the voltages and currents over
O and O’ respectively, we have in this case

Vig =0, (95a)
Vas = aasing, (95b)
Tig = bsVas = bpzeing. (95¢)

The general field can be written as a linear combination of this basic set:

Vi=miVia + mﬁVw = MeVia = all(maiXa>y } (96)
Ve = maVou 4+ mgVos = mgVas = azo(mgisg),

and
11 = Malia + Malis = (Madia) + bsaea(msieg), (97)
To = Maloa + Matog = bay1(Mat1a) + (MsTag).

Solution of Eqs. (97) for mai1. and msizs and substitution into Iiq. (96)
give the linear relation between the voltages and currents in the two
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guides:
V1 = leil - Z12i2y
Vz = Z21’i1 - Z221'2, (98)
where
- Gu ’, - _ 0227
Zu =% Zas i
aQab a11@a9b, 98a
Za = !'}Aﬂ 8, Ty = — 11‘422 . ( )
A4 =1 I)J)g(l“(l'zg.

It is necessary to observe sign conventions in using FKgs. (98) to relate
the fields over O’ to the fields over O. The convention will be adopted
here to correspond to that used in” Sec. 2-2: regarding O as the input
terminals to the four-terminal network, the positive z-direction in guide A
is toward the antenna, and 7y is the positive current entering the network;
at the input terminals (', the positive current leaves the network, the
positive z-direction in the second guide being away from the antenna.

2:18. The Reciprocity Relation between the Transfer Impedance
Coefficients.—Equations (98) establish a four-terminal network repre-
sentation for the coupled transmitter-receiver system. The final prob-
lem to be considered is the justification of the assumption that the
transfer impedance coeflicients satisfy the reciprocity relation

Z12 = Z?l-
We shall make use of the Lorentz reciprocity theorem:! Let E,, H, and
Es, Hg be two linearly independent fields in the region 17; then

9§L (n x E,) - Hs dS = 95 (n x Es) - H, dS. (99)

S4-87
The conditions for the validity of the Lorentz theorem are the same as
those stipulated for the uniqueness theorem and superposition principle
in the preceding section.

Tet us apply the theorem to the two basic fields employed in the
preceding section. The relation (99) in this case reduces to

f (n x E,) - HgdS = /o (n x Eg) - H, dS. (100)
0 ,

Making use of Eq. (88) and taking into account the sign conventions on
the eurrent parameters, we obtain

18ee the article by A. Sommerfeld in Frank and V. Mises, Die Differential- und
{ntegralglcichungen der Mechanic und Physik, Vol. T1, p. 933, reprinted by Mary 8.
Rosenberg, New York, 1943.
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— Vit /Oi, < [gi(z,y) x hi(z,y)] dS

= Vostsa /0, i; - [g2(z,y) x ho(x,y)]dS. (101)

By virtue of the property of the functions g, h of Eq. (88a) it follows that
~Vidlig = Vagioa. (101a)

If now the currents are expressed in terms of the voltages by means of
[5gs. (94) and (95¢), it is seen that the coefficients b, and bg of the pre-
vious section are related:

b = —by.

It then follows from Egs. (98a) that the transfer impedance coeflicients
obey the reciprocity relation
Zys = Zay.




CHAPTER 3
RADIATION FROM CURRENT DISTRIBUTIONS

By S. Suver

The fundamental approach to an understanding of microwave
antennas is necessarily based on electromagnetic theory. This chapter
therefore begins with a discussion of the field equations and the general
properties of an electromagnetic field; the treatment is necessarily cursory,
being intended as a summary of material that is familiar to the reader.!
This theory is then applied to the simplest problem of antenna theory,
the calculation of the radiation fields due to known current distributions.
A discussion of certain idealized current distributions illustrates the
principles of superposition and interference and furnishes a theoretical
guide to the design of various antenna feeds.

3-1. The Field Equations.—The field equations relate the electric
field vectors E and D and the magnetic field vectors B and H to each
other and to the sources of the field, the electric charges and currents.

Sources of the Field.—The sources will be specified in terms of density
functions.

The excess of positive over negative charge in a volume V is

Q=/pdv, (D
v

where p is the charge density per unit volume.
The rate of transport of charge across a surface S, that is, the net
current passing through S| is

I=/J-ndS, 2)
S

where J is the current density and n is the unit normal to the surface S
in the direction defined as positive. The current J has the direction of
flow of positive charge, a negative charge moving in one direction being
equivalent to a positive charge moving in the opposite direction.

In the rationalized meter-kilogram-second (mks) system of units,?

! The reader is referred to J. A. Stratton, Eleciromagnetic Theory, McGraw-Hill,
New York, 1941, for a inore detailed treatment of many of the subjects covered in this
chapter.

2 Stratton, op. cit., pp. 16, 602.
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which is used in this book, the charge density is measured in coulomib«
per cubic meter and the current density in amperes per square meter,

As a consequence of the conservation of charge, the charge density
and current density are subject to an important relation. The total
current passing out of a closed surface S must equal the rate of decrease
of positive charge in the enclosed volume. That is,

i)
Sésj-ndS:—&/Vpdzr, (3)

where n is the unit vector normal to the srface and directed out from
the region V. By the divergence theorem!'

gésj-nds=/v-1dv. )
.

Substitution of this into Eq. (3) gives

dp
/V (v T+ g> dv = 0. (5)

This must hold for any arbitrary volume, no matter how small; conse-
quently the integrand itself must be zero:

voI+2 - ©)

This is the so-called “equation of continuity.”
Finite charges and currents are sometimes limited to surfaces of dis-
continuity. In such cases the excess of positive over negative charge

on a surface S is
Q = / 7 dS, (7)
s

where 7 is the charge density per unit area. Similarly if we let C be a
curve on the surface of discontinuity and n; a unit vector normal to C
in the tangent plane, then the total current crossing C, that is, the rate
of transport of charge across C, is

I=/K'n1d8, (8)
o

where K is the surface-current density. The surface-current density K
and the charge distribution 5 on the boundary of an infinitely conducting
medium must satisfy an equation of continuity analogous to the volume

1 A treatment of the divergence theorem and Stokes’s and Green’s theorems, which
are used subsequently, may be found in any text on vector analysis.  See for example,
H. B Phillips, Vector Analysis, Wiley, New York, 1933.
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distributions. This equation of continuity, in integral form, is

_ o o
$ K-nids - /qadb, ©)

where C is any ciosed curve enclosing an area S.
Another form of this relation is

d
vi-K+ 27 =, (10)
at
where the “surface divergence’ of K, Vs« K, is defined by

1
Vs-K=jT;:4-§CK-n1ds, (11)
A being the area circumscribed by the curve C.

Definttions of the Field Quantities.~—The field vectors E and B measure
the forces exerted on charges and currents respectively. The force on a
stationary charge ¢ at any point in the field is

F = Eq. (12)

The total force on a current distribution through a volume V of space is

F = / J x B dv, (13)
-

the integrand being the vector product of J and B.  The veetor E is meas-
ured in volts per meter and B in webers per square meter.

The field veetors D and H are determined by the field sources and
are independent of the medium. The net outward flux of D through a
closed surface S is a direct measure of the enclosed charge Q:

9§SD-ndS=Q, (14)

where n is the unit vector normal outward from the enclosed region. The
magnetic field H is related to the current. If I is the net current passing
through a surface S bounded by a curve C, then

§C H-ds = I. (15)

The integral on the left is the line integral of the tangential component
of Halong the curve C; the direction of integration is such that an observer
traversing the curve in that direction will have on his left the positive
normal n used in defining the current 7.

The Field Equations.—The ficld equations expressing the relations
between the field vectors and the sources may be set up cither in ditfer-
cutial or integral form.
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The differential relationships, Maxwell’s equations, are

vxE+%’;’:0, (16a)
VxH—J+‘?£, (16)
v.-B =0, (16¢)
V.D = p. (16d)

Equation (16¢) may be derived from 15q. (16a) by taking the divergence
of the latter. Similarly, Iiq. (16d) may be derived by taking the diver-
gence of Eq. (16b) and comparing the result with the equation of continuity

v-]+gzp= ) (16¢)

Equations (16a) to (16¢) must be obeyed simultaneously by the field
components and sources of any electromagnetic field.

The corresponding integral relations are the following. let C be a
closed curve spanned by an arbitrary surface S; then

[¢] -
§Cn-ds - _}37/5,]3"“73’ (17a)

§ H.ds = /5<J n %?)-nds, (17h)

the positive direction of integration around the curve € heing that
defined previously. The first of these relations is Iaraday’s law of elec-
tromagnetic induction, and the second is the generalization of Ampére’s
law in which the current density J due to charge is supplemented by the
“displacement-current density ” 9D /dt.  These equations ean be derived
from ISgs. (16a) and (160) by the use of Stokes's theorem. By applica-
tion of the divergence theorem to Lgs. (16¢) and (16d) one obtains two
more integral relations:

5{55 B-ndS = 0, (17¢)

/ pdvr = @, (17d)
.

where the integrals extend over the closed surface S of a volume V.
Equivalent Magnetic Charge and Current.—lquations (16¢) and (17¢)
express the fact that there exist no free magnetic charges and corvespond-
ing magnetic currents. However, it s at times convenient to introduce
equivalent distributions of such charges and currents, A simple example
is provided by the infinitesimal current loop.  This ix equivalent to a
magnetic dipole normal to the plane of the loop. If the current in the

9SSD-ndS
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loop varies with time, the dipole strength varies likewise; the effect is
that of a magnetic-current element.

In diffraction theory, equivalent magnetic-charge and magnetic-cur-
rent distributions are introduced in a more general way. In the presence
of a magnetic-charge distribution of density p. and a magnetic-current
distribution of density J., Maxwell’'s equations assume the more sym-
metrical form

VxE=—-J.— %, (18a)

VxH=J+%‘i—; (18b)

v-B = Pm,y (186)

v.D = p, (18d)

with two equations of continuity
v-I+ 2=, (18¢)
dpm _
VeInt 57 =0 (18f)

It is to be emphasized that the magnetic-source densities are mere
formalisms. We introduce them here to avoid later repetition of certain
mathematical developments. They will be different from zero only under
very special circumstances.

3-2. The Constitutive Parameters; Linearity and Superposition.—
There exist between the various field vectors further relations that depend
on the medium.

In isotropic media the vectors D and E have the same direction
at any ‘given point, as do the vectors B and H. The ratios of their
magnitudes are constitutive parameters of the medium;

€ = E} (lga)
the electric inductive capacity, and
B
" = ﬁl (lgb)

the magnetic inductive capacity. These quantities may be functions of
the field intensities and the frequencies. They depend on the field
intensities only for a small group of substances which we shall exclude
from our discussion. The frequency dependence is a very general prop-
erty. In vacuo these parameters are constants and have the values

€ = 8.85 X 1072 farad/meter,
po = 4m X 1077 henry/meter
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The constitutive parameters are move commonly specified in terms
of the specific inductive capacities

ke = = (20(1)
€y

ko = 2. (200)
Ho

The quantity k. is known as the dielectric constant; k., as the magnetic
permeability. These ratios are dimensionless and independent of the
units. For practically all materials o” interest in antenna work k,, is
but negligibly different from unity and will be taken equal to unity unless
otherwise indicated.

It is important to note that although D and E are in the same direc-
tion, they are not necessarily in phase. Such phase differences depend
on the molecular structure of the medium and are connected with dis-
sipation of electromagnetic energy in the medium. They are conveniently
taken into account hy expressing e as a complex number,

€ = ¢ — Jei. (21)

The energy losses associated with the imaginary part of € are to be dis-
tinguished from the conduction loss associated with eonduction currents.

Two types of currents may contribute to the source function J: con-
vection currents and conduction currents. In the present volume we
shall be concerned only with conduction currents, for which the current
density is proportional to the electric field vector E ;

J = oE. (22)

The constant ¢ 1s the conductivity of the medium. Like the other con-
stitutive parameters it may be frequency dependent. A conducting
medium cannot support a free volume-charge density p; if the conduc-
tivity is at all appreciable, p may be taken to be zero at all times.

If the constitutive parameters are independent of the field strength,
all relations between the field vectors—Maxwell’s equations and the
constitutive relations [Eqgs. (19a¢), (190), and (22)]— are linear.  Under
such circumstances the superposition prineiple applies.  This states that
if a set of field vectors E;, . . . | Hy and source functions p; and J,
satisfies the field equations and a second set of field vectors Eqy . . . H,
and source functions pz and J. does so also, then the sum of these two
solutions Ey + Es, . . . |, p1 4+ p2o J1 4 T2 also satislies the field and
constitutive equations and deseribes a possible electromagnetie field.

3-3. Boundary Conditions.—In addition to the field equations, which
give the relations between the elements of the field in a medium with
continuously varyving properties, we must know the relations that exist
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at a boundary where the properties of the medium change discontinu-
ously. The derivation of these boundary conditions starts from the
integral forms of the field equations; the procedure is standard and will
be found in any text on electromagnetie theory; we shall simply state
the results.

Let us consider the boundary surface between two media with
constitutive parameters e;, p;, o1, and e, us, ge, Tespectively. Let the
positive unit vector n normal to the boundary surface be directed from
medium 1 into medium 2. If E, Eo, . . . , H), H; are the field vectors
at contiguous points on either side of the boundary, the boundary con-
ditions are the following:

1. The tangential component of the electric field intensity is con-
tinuous across the boundary:

n x (Ez - E]) = (. (23)

It can be shown that a field penetrates into a conducting medium

a distance inversely proportional to the square root of the con-

ductivity.! Thus if ¢ = o, E; must be zero; this boundary con-
dition then reduces to

nXE2= (U'1= 00) (24)

2. There is a discontinuity in the normal component of D at the
boundary if there exists a surface layer of charge:

n:- (D, — D)) =n-(:E; — ¢E;) =19, (25)

the charge density per unit area being 5. Such layers of charge
occur, in general, only when one of the media has infinite
conductivity.

3. The normal component of B varies continuously across a boundary:

n:(By— B) =n- (wH, — uH) = 0. (26)

4. A discontinuity in the tangential component of H oceurs only
when there is a surface-current sheet on the boundary

n x (H, — H) = K, (27a)

K being the surface-current density. Such current sheets exist
only if one of the media, say the first, is infinitely conducting.
In this case, however, the field cannot penetrate the medium; H,
must be zero. We have then

nXH2=K (0’1= 00) (27b)
and likewise
n-B; =0 (o7 = o). (28)

LJ. AL Stratton, RKlectromagnetic Theory, MeGraw-Hill, New York, 19471, p. 504.
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Under all other conditions K is zero, and the tangential component
of H as well as the normal component of B is continuous.

These boundary conditions apply to fields that satisfy Maxwell’s
equations [Eqs. (11)] everywhere.  We shall have oceastion in diffraction
problems to consider a boundary surface between two regions of the
same medium. From solutions of Maxwell's equations in these two
regions we shall form functions that are solutions of Maxwell’s equations
everywhere except on this surface, where they are discontinuous. These
discontinuities can be formally associated with distributions of magnetic
charges and currents on the boundary surface by equations that can be
obtained from the Maxwvell equations [I5gs. (13)] in which magnetic
sources have been introduced:

n x (Ez - E) = "Km, (29)
and
n- (Bz - Bl) = Nm, (30)

respectively, where K., is the density of the fictitious magnetic-current
sheet over the boundary and 7, is the deunsity of the fictitious surface
layer of magnetic charge.  Asin the case of electric current and charge, the
magnetic-source functions must satisfy a surface cquation of continuity,

VoK, + 7" =0, 31)
at
where as before Vs is the surface-divergence operator.

3-4. The Field Equations for Harmonic Time Dependence.— 1t will
be sufficient for most of our purposes to consider fields having a harmonic
time dependence. In such cases we shall take all fie'd and source dis-
tributions to depend on time through the sume factor e, The real
and imaginary parts of these complex solutions of the field equations
will themselves be solutions of the ficld equations and will describe real
fields. The assumption of harmonic time dependence will not greatly
affect the generality of our results because an arbitrary field and source
distribution can be resolved into harmonic components.

With the restriction of the time dependence to the time factor e,
the field equations may be written as

V xE + jopH = —J., (32a)
Vv xH = (o + jwe)E, (32b)

V. (uH) = p,, (32¢)

V- (E) = p, (32d)

V-] +jup =0, (32¢)
V- Jn + jop. = 0. (32f)
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These equations apply equally to the field quantities and their space-
dependent factors. Equations (19a), (19b), and (22) have been applied
in this formulation. Equations (32¢) and (32d) have been written in
the general form, for inhomogeneous media in which e and p are funec-
tions of position. It should be noted that the equation of continuity
determines the charge density directly from the current.

3-6. Poynting’s Theorem.—Discussions of the energy relations in an
electromagnetic field are usually based on Poynting’s theorem. From
the first two of Maxwell’s equations, (16a) and (16d), we obtain

H.VxE-E-VxH-= H——E 6t —-E-J. (33)
The quantity on the left is equal to V. (E x H). On use of the con-
stitutive relations [IKquations. (19a) and 194)], Eq. (33) becomes

d uH
V.- (EXH)4+E-J = 6t<2+ 2) (34)
This is Poynting’s theorem. Formally, Poynting’s theorem resembles the
equations of continuity previously considered; it expresses the conserva-
tion of energy, rather than that of charge. The Poynting vector

S=ExH (35)

is interpreted as the intensity of flow of energy, that is, the rate of flow
of energy per unit area normal to the direction of 8. The quantities
eE?/2 and pH?/2 represent the densities of electric and magnetic energy,
respectively. The term E - J measures the rate of dissipation or produc-
tion of electromagnetic energy per unit volume. If E - J is positive, it
is a dissipation term; if it is negative, it represents production of electro-
magnetic energy.

The analogy of Poynting’s theorem to the equation of continuity
is brought out more clearly in the corresponding integral form. ILet us
integrate q. (34) over a volume V enclosed by a surface S:

/v-(ExH)dv+/E-Jdv=—§/ <£+”H)dv (36)
14 v at Vv 2

Making use of the divergence theorem, we can transform the first integral
into a surface integral over the boundary, obtaining

Taom =8 [ (&
s ndS+/VE Jdv = al/p'<2 + 2)dv. @7)

With the interpretations of the integrands given ahove, Iiq. (37) states
that the net rate of flow of energy out through the boundary surface
plus the rate of dissipation of electromagnetic energy within the volume
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(or minus the rate of production) is equal to the rate of decrease of elec-
tromagnetic energy stored in the volume V.

Equation (34) is quite general in its applications. We have now to
express Poynting’s theorem in a form applicable to fields varying peri-
odically with time. In this connection it must be noted that the complex
exponential representation of periodic fields can be carried through all
linear operations but that in nonlinear operations (such as formation of
the products occurring in the Poynting theorem) the real expressions
for the field quantities must be used. The complex field vectors may be
expressed as

E = (Eet) = (E, + JE,)e?, (38a)
H = He*) = (H, + jH)et, (38h)
The corresponding real fields are
Re E = (E. cos ot — E; sin wt), (39a)
ReH = (H, cos wt — H; sin wt). (39b)

The Poynting vector is thus

S=ReE xReH (40)
= [E, x H, cos? wl + E;xH;sin*wl — (E, xH; 4+ E; xH,) sin w! cos wl]

In general we are not interested in the instantaneous flow but in the
energy flow averaged over a cycle. That is, we wish to know

S =1/ Sdi, <T =21>, (41)
T 0 w

the overline denoting the time-average value. Now the time average
of sin wt cos wt vanishes, and the time average of both cos? wt and sin? wt
is . Hence

§ = $(E,xH, + E;xH,). (42)

It will be observed that except for the factor §, the right-hand side of
Eq. (42) is the real part of E x H* where H* represents the complex
conjugate of H. We have then

S = iRe (E x H¥. (43)
We shall seldom be concerned with the instantaneous Poynting vector.
Unless explicitly stated otherwise, all future reference to the Poynting
vector will be to the time-average value given by liq. (43); the overline
will be omitted hereafter except where a distinction must be made.
It is of interest to formulate Poynting's theorem in terms of time-
averaged quantities. Since the divergence is a linear operator, involving
space derivatives only,

V-S=V.-S=V.-ReH(ExH* =1 Re V- (E xH*. (44
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In the absence of magnetic charges or currents one has, for a field with
harmonic time dependence,

1

5V (ExH% =5 (H* VxE—E-VxHY

N| —

= — 30— juME-E* - S H.HYL (45)

Taking the real part of Eq. (45), with due regard for the complex form
of ¢* [Eq. (21)], we obtain the modified Poynting’s theorem

V.S = —3(v + we)E - E,* (46)

or, in integral form,

—¢Ss~nds=/%(a—*—wei)E-E*dv. @47
Vv

Since the unit normal n is directed outward from the region enclosed by
the surface S, the term on the left of Eq. (47) is the net average power
flow across S into the region V. In view of the harmonic time depend-
ence of the field, there can be no average increase in the energy stored;
the terms on the right must be interpreted as electromagnetic energy
dissipated within the region V. Thus, the imaginary component of the
electric inductive capacity, like conductivity of the material, results
in energy dissipation. A material with a complex dielectric constant is
called a “lossy dielectric.” By Eq. (47), if a medium is neither a con-
ductor nor a lossy dielectric, the net power flow across a closed surface
S into the region enclosed by it is zero.

3:6. The Wave Equations.—We turn now to a consideration of the
wave equations satisfied by electromagnetic fields. We begin with
Maxwell’s equations in the form [Egs. (18)] that includes magnetic
sources but confine our discussion to linear homogeneous media; e and
u are constants independent of position.

Taking the curl of Xq. (18a), eliminating the magnetic vector B by
meaps of gs. (18b) and (19b), we obtain

o'E oY

VxVxE+/.Le*at:f=—u&—Vme. (48)

Similarly, interchanging the roles of Kgs. (18a) and (18b), we get

FH _ 3]a
o T T ar

VxV xH+ ue +Vx] (49)

We now make use of the vector identity

VxVxP=V(V.P) — VP. (50)
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On application of this to both the previous equations and replacement
of V- Eand V - Hby p/eand p,/p respectively, Egs. (48) and (49) become

2
VZE—ye%}f— _ J+v Jm+in, (51a)
o’H a]m
°H — -
VH — pe—-- EE €3 - VxJ+- me (51b)

On the left sides of these equations are the famlhar differential terms of
the wave equation; the terms on the right represent the effects of dis-
tributions of sources. In a source-free medium these equations reduce
to the homogeneous wave equations

J’E
a0

oH
= =0, (52b)

VE — pe——r (52a)

VH — pe —

with the speed of propagation of the wave given by

1

v = _\/#—e) (53)

The speed of propagation in free space is a constant, independent of
frequency:

c =

1
—— = 3 X 108 meters/sec. 4
\/Fofo (54)

The index of refraction of a medium is defined as
= g = k.. (55a)

For most media the magnetic permeability k.. is unity, and

= Vk.. (55b)
The wave equations simplify for fields with time dependence e*f, in
that the time can be totally eliminated from the equations. There result

the so-called “vector Helmholtz” equations for the space dependence
of the fields:

VxV xE = kE = —jou] — ¥ x Jny (56a)
VxVxH —I’H = —jweJ. + V x]J, (56b)

where
k? = w?ue. (57)

The constant & is known as the propagation constant. In nonlossy
media it is real and is related to the wavelength by
27

k= ~ (58)
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If € is complex, both the speed of propagation defined by Eq. (53) and
the propagation constant are complex. The attenuation of a wave as
it propagates in a lossy medium is directly connected with the imaginary
part of the propagation constant.

Applying Eq. (50) to Egs. (56) yields

V2E + I’E = jop] + V x Jn + %Vp’ (59a)
V:H + i'H = jweJ. — V xJ + %me. (5956)
In a source-free medium these reduce to the homogencous equations
V?E + kE = 0, (60a)
V'H 4+ i*H = 0. (60b)

Tt should be emphasized that FEqs. (60) imply that each rectangular
component of the field vectors E., E,, . . . , H, satisfies the scalar Helm-
holtz equation

vy 4 kg = 0. (61)

Though all fields that satisfy Maxwell’s equations necessarily satisfy
the wave equations, the converse is not true. A set of field vectors E
and H that satisfy the wave equations constitute an admissible electro-
magnetic field only if at the same time they satisfy Maxwell’s equations.
Furthermore, the fields must behave properly at the boundaries of the
region concerned in accordance with the boundary conditions formulated
in Sec. 3-3. If the region is infinite in extent, separate attention must be
paid to the behavior at infinity.

3-7. Simple Wave Solutions.—Gencral considerations relative to
wave propagation will be developed in the next chapter. We shall con-
sider here several simple waveforms, solutions of gs. (60), that recur
frequently in general antenna theory. These are (1) the homogeneous
plane wave, (2) the circularly symmetrical eylindrical waves, and (3)
the isotropic spherical wave. In each case the medium is assumed to be
homogeneous, nonconducting, and free from sources.

Plane Waves.—The plane wave is mathematically the simplest type
of electromagnetic wave; its propagation is essentially one-dimensional.
Let us attempt to find a field such that the directions and magnitudes of
the field vectors are constant over any plane normal to the direction of a
vector s (Fig. 3-1) but vary periodically along lines parallel to s. In the
case of the electric field vector E, the conditions stated above will be
satisfied if the field has the form

E(z,y,21) = Eoclivt—te®), (62)

when r is the position vector from the origin to the field point (z,y,2)
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and k is the propagation constant defined by Eq. (57); the amplitude E,
is independent of position and time. Since the planes normal to the
unit vector s are defined by r - s = constant, this field must be uniform
over every such plane. These
planes are equiphase surfaces for
the wave, and its propagation can be
visualized as a continuous progres-
sion of one equiphase surface into
the contiguous one. It is seen
further that at any instant the field
has the same magnitude over each
of the family of parallel planes

r-s=Ci211:—n=Cin)\
Fig. 3:1.—The plane wave. n = 0, 1, 2, ot (63)

i

It is readily verified that the electric field vector defined by Eq. (62)
satisfies the wave equation [Eq. (52a)]. Obviously a similar expression
for the magnetic field vector H(x,y,2,{) is a solution of Eq. (52b). How-
ever, if these field vectors are to describe an electromagnetic field, they
must be so related as to satisfy Maxwell’s equations. The required
relation is Eq. (32a):

H - v xE. (64)
Wit

On introduction of Eq. (62) this becomes

H - \/—‘ (s xE) = \[-‘ (s x Bo)eitat—ten, (65)
Y K

The space-time dependence of H is the same as that of E, but the direc-
tion of H is normal to that of both s and E,. Equation (32d) requires
V + E to be zero in a source-free medium. Thus

V.E= —jts-E =0; (66)

that is, E is normal to s. To satisfy Maxwell's equations, the electric
and magnetic field vectors must thus lie in the plane normal to s. It
follows at once that the energy flow, that is, the Poynting vector,

S = %Re (E x H*) = %(—*) Eol’s, (67)
n

is in the direction of propagation of the wave, normal to the equiphase
surfaces.

It is of interest to determine whether or not there can exist a Llane
wave of the form of that in Eq. (62) if the magnitude of Eq is an arbitrary
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function of position over an equiphase plane. Without loss of generality
we can take the direction of propagation along the z-axis and the direc-
tion of E; along the z-axis. We are thus considering the field

E. = Ey(z,y)e >, E,=E =0 (68)

(omitting the time factor e®). 1If this is to be a possible field, E, must
satisfy the scalar Helmholtz equation [Eq. (61)]. This will be true only
if Eo(z,y) is a solution of the two-dimensional Laplace equation:

3*E, | 92E,
G T = O (6_9)
Since there are no sources, Eo(x,y) must be finite and continuous over the
infinite z,y-domain. However, being a solution to Laplace’s equation,
Eqcan have no maxima or minima in this infinite region. Consequently,
E(z,y) must be a constant; arbitrary amplitude distributions and infinite
plane equiphase surfaces are incompatible.

It should be noted that the infinite plane wave is impossible physically
because the total energy transported across an equiphase surface is
infinite. The practical importance of the plane wave lies in its use in the
analysis of other waves. There are two parameters characterizing the
plane wave: its angular frequency « and the direction of propagation s.
By superposing time-periodic plane waves, all traveling in the same
direction but with various values of w and amplitudes Ey(w), it is pos-
sible to build up a plane wave of more general time dependence—a pulse-
modulated or otherwise modulated wave. By superposing plane waves
with the same frequency w but with various directions of propagation
and amplitudes E,y(s), it is possible to synthesize a time-periodic wave
with a more general type of equiphase surface. Because each component
wave satisfles Maxwell’s equations, the resultant obtained by superposi-
tion likewise satisfies the field equations.

Cylindrical Waves.—Circularly symmetrical cylindrical waves are the
lrmentary forms of two-dimensional propagation. The equiphase sur-
faces f these waves are coaxial circular eylinders; the wave is propagated
along the radii of the phase surfaces.

Cylindrical coordinates, as defined in Fig. 3:2, are appropriate for the
analysis. The z-axis is taken as the axis of symmetry, and r and 6 are
polar coordinates in a plane normal to the z-axis. At each point we
define unit vectors i,, is, i. in the direction of increasing r, 4, and z,
respectively; the field vectors may, on occasion, be resolved into com-
ponents in these directions.

We shall now seek solutions of the field equations in which the field
vectors are everywhere tangential to the evlindrical equiphase surfaces
and have constant amplitude over cach such surface (that is, the ampli-
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tudes are functions of r only). We shall seek solutions of two different
z types, distinguished with reference to the
directions of the field vectors:

\ / Case a:
| H. =0, E.(r) = 0.
I}\ Case b:
% lzyie E.=0, H{) 0.
Il < In each solution, of course, H, = E, = 0.
)r iy We begin by determining the form of
A ,,.T— Y the z-component of the field as a solution
/ of the wave equation; later we shall deter-
_,) mine the remaining field components by
means of the field equations.

x

Since E.(r) and H.(r) are components
I'16. 3-2.—Cylindrical coordinates.

of the respective field vectors in a rectan-
zular coordinate system, they must satisfy the scalar Helmholtz equation
[Eq. (61)]. In cylindrical coordinates this becomes

[V N 9%y ot _
T61( 67>+7726702+k + kY =0, (70)

where ¢ may represent either E, or H,. Since ¢ is independent of 6 and
z, this reduces to

d>y 1 dy oy
dr2+;m+/l¢>— 0. (71)
On introduction of
£ = Fkr, (72)
this becomes
W 1 dy
= () 73
e (73)

This is the differential equation satisfied by the Bessel functions or, more
generally speaking, by the cylinder functions or order zero.! Of the
many solutions of this equation which we might identify with the func-
tions E, or H,, those of immediate interest here are the Hankel functions
HP (&) and HP(£). The nature of these functions is most evident in
their asymptotic behavior for large values of £ = kr:

\/,ﬂ 1G9} (74a)

mhr (hr> 1).
el “1(“"’) (74h)

7r/r

HP (kr)

ZZ

U

H® (kr)

1 G. N. Watson, T'heorij of Bessel Functions, Macmillan, 1944,
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The second of these functions, multiplied by the time factor et repre-
sents a wave traveling in the positive r-direction; the phase quantity
ot — kris the analogue of the quantity wt — kx for a plane wave traveling
in the positive z-direction. Thus H{?(kr) represents a cylindrical wave
diverging from a line source on the z-axis. Similarly, I{{"(kr) represents
a wave traveling in the negative r-direction, that is, a wave from infinity
converging to a line focus along the z-axis.

Restricting attention to the diverging wave function H@P(kr), we
consider first Case a. We assume

E = H@(kr)eiot, (75)

and use the field equations to determine the associated magnetic field.
The curl of a vector P, expressed in cylindrical coordinates, is

18P, 0P\, P, oP, 3 oP. . .
vxP'(?W_E>"+<az z>”+ [a_rr aeJ’“ (76)

Taking the curl of the vector E and making use of Eq. (32a), we obtain

i T4 . -
- _ wiﬂl:E H(O”(kr)] ot (77

It is left to the reader to verify that the field vectors E and H defined
by Eqgs. (75) and (77) satisfy the other field equations. Over the cylin-
drical surfaces of constant r, E and H are perpendicular to each other
at every point and lie in the tangent plane to the surface; as in the case
of a plane wave, E and H are normal to the direction of propagation, and
the Poynting vector is normal to the equiphase surface. As the radius
of the equiphase surface becomes large, it becomes sensibly plane in
the neighborhood of any point. We must, therefore, expect that as
r — o, the relationship between E and H approaches that existing in a
plane wave. The asymptotic form for H may be obtained by introdue-
ing liq. (74b) into Iiq. (77). Neglecting terms of higher order in 1/r,
we find

%Hﬁf’(kr) —jk\/ -(r-5), (78)
whence
H~ — w_’i HE(kryeod, (ks> 1). (79)

Thus, in the limit as r — o,

H= \/E (i, xE) 80)
n

as was to be expected.
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The derivation of the field for Case b proceeds in a similar manner.
We assume
H = HP(kr)ei'i,; (81)

the associated electric field follows by application of Iiq. (32b), which, in
the case at hand, becomes

1

E=_—VxH (82)
Jowe
It follows that
i [d i
E=21 [E Hg;)(kr)] ciotis, (83)

The general remarks concerning Clase a apply to the present case also.
It is easily verified that here too the relationships approach those in a
plane wave as the radius of the cylindrical phase surface becomes very
large; that is,

lim H = ﬁ(i, x E). (84)

We have thus obtained two independent field distributions with
cylindrical equiphase surfaces. We shall refer to these as cylindrical
modes of free-space propagation. The first field, Case a, can arise from
a linear distribution of electric current along the z-axis and will be spoken
of as a field of the electric type; Case b can be associated with a linear
distribution of magnetic current along the z-axis and is correspondingly
referred to as a field of the magnetic type. These are the simplest cylin-
drical modes of free-space propagation. A treatment of the general
theory of cylindrical waves will be found in Stratton.!

Isotropic Spherical Waves.—Next we shall consider the isotropic
spherical wave with equiphase surfaces that are concentric spheres and
field amplitudes that are constant in magnitude over each equiphase
surface.

The spherical coordinates r, 6, and ¢, illustrated in Iig. 3-3, are
appropriate for this discussion. With the spherical coordinates are
associated a set of orthogonal unit vectors i,, is, 15 at each point in space,
in the directions of increasing », 8, and ¢ respectively.

Let the center of the family of equiphase spheres be at the origin of
the coordinate system. An attempt to construct a field that is a func-
tion of 7 alone, as in the case of cylind ical waves, will fail. For example,
suppose that we try to construct a field in which the field vectors have
only the components

E = E(T‘)ie,
H = H(i,.
1J. AL Stratton, Electromagnetic Theory, McGraw-11ill, New York, 1941, Chap \'1.

(85)

il
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1t will be seen that there is an essential ambiguity in the directions of these
vectors at all points for which 8 = 0 or =. The ambiguity can be ren-
dered trivial only by making the magnitudes of the fields vanish for
8 = 0 and =; the field can then be independent of 6 only if it vanishes
identically.

The isotropic spherical wave is, in general, a possible waveform only
for sealar fields such as are encountered in acoustics. However, it is
often useful for reference and comparison with electromagnetic waves.

Fig. 3-3.—Spherical coordinates.

Accordingly we shall note briefly the spherically symmetrical solutions
of the scalar Helmholtz equation [Eq. (61)]. In spherical coordinates,
the Laplacian V?is

1af,0 1 9 9 1 9
2 = . 2 7 - i T
Vi= g (T ar> T T em 6 a6 (““ 6 ao) transae 89

When ¢ is a function of r only, the Helmholtz equation becomes

LA\ L,
?E( d) Ky = 0. &)

1t is readily verified that

fher
Yy = e—;“' ;

e—ikr (88)
V- = —

are solutions of this equation. The solution ¢_, multiplied by the time
factor e, represents a wave diverging from a source at the origin, while

Y.et represents a spherical wave converging to a point focus at the
origin.



&0 RADIATION FROM CURRENT DISTRIBUTIONS {Sec. 3-8

3-8. General Solution of the Field Equations in Terms of the Sources,
for a Time-periodic Field.—The plane and cylindrical waves discussed in
the preceding section are solutions of the homogeneous field equations
which apply in regions of space free from charge and current distributions.
In deriving the form of these fields, no attention was paid to their ulti-
mate sources, which lay outside the domain of validity of the solution.
Our present task is the more exacting one of determining what fields
will arise from a prescribed set of
sources in a homogeneous medium,

For reference the complete set of
field equations is repeated here.
Magnetic charge and current distri-
5, butions are included for later use.

VxE + jopH = —~J,., (3:32q)

V xH — jweE = J, (3-:32b)

v.-H = e“z» (3-32¢)

V.E = f (332d)

V-] 4 jup =0, (3-32¢)

F16. 3-4.—Notation for Green's theorem. V- Jm + jwpm = 0, (332f)
also the pair of vector Helmholtz equations,

VXVXE—kZE:—ijJ‘“VXJM (89)

VxVxH—-EFPH= —ju], +Vx]J (90)

The integration of these equations is based on a vector Green’s
theorem:! Consider the region V, illustrated in Fig. 3-4, bounded by the
surfaces 81, . . . , 8,. Let F and G be two vector functions of position
in this region, each continuous and having continuous first and second
derivatives everywhere within ¥ and on the boundary surfaces. Then,
if n is the unit vector normal to a bounding surface, directed into the
region V,

/(F-VxVxG—G-VxVxF)dv
v

=—/ (GxVxF-FxVxG)-ndS. (91)
Si+ 824+ +8a

As indicated, the surface integral extends over all boundary surfaces.
Let us suppose that there exists in a volume V, such as that consid-
ered above, an electromagnetic field such that E and H meet the condi-

! The procedure adopted here is due to J. A. Stratton and L. J. Chu, Phys. Rev.,
56, 99 (1939). A proof of the Green’s theorem is given in this paper.
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tions of continuity required of the vector function F of the Green’s
theorem. We shall now see, with the aid of this theorem, how one can
express the field at an arbitrary point P in the volume V in terms of the
field sources within this volume and the values of the field itself over the
boundaries of the region.

We define the vector function of position

e—jkr

G =

7‘ a = ya, (92)
where r is the distance from P to any other point in the region and a is
an arbitrary but otherwise constant vector. This will satisfy the con-
tinuity conditions required of the function G in the Green’s theorem
everywhere, except at P, where it has a singularity. Accordingly, we
surround P by a sphere 2 of radius 7o and consider that portion V' of V
which is bounded by the surfaces S5, . . . , S, and Z; in this restricted
region, G as defined by Eq. (92) and F = E of the electromagnetic field
satisfy the conditions required for application of the Green’s theorem.
We have then

/ a-VxVxE—-E-V xV xya)dv
-

= ——/ (ExVxvya—yaxVxE)-ndS. (93)
St Saty

As the first step in the manipulation of this equation, we shall trans-
form the volume integral involving the electric field into an equivalent
integral involving only the field sources. Introduction of the vector ya
into the vector identity [Eq. (50)] and use of the facts that ¢ satisfies
the scalar Helmholtz equation and a is a constant vector will suffice to
show that

VxVxya=Va vy + Iia. (94)
Taking this in conjunction with Fq. (89), we obtain

ya-VxVXxE—-E.-V xVxya=a-(—jou]J¥ — ¢V xJ.)
—E-v(a-Vy). (95)

A few additional transformations are neecessary:
E-V(@-Vy) =V.|E(a-Vy)] — (a-VY)V-E (96)
= V- [E@- vyl - 2a- vy,

and

YV xJ,. =V xJ.y+J. xVy (97)
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By use of these, Iiq. (93) can be given the desired form:
a- /V(jwu.w 4+ Jm X VY ~ gv\p) do + a- [V'V % o dv
+ /V,V‘[E(a-V¢)]dv
= /S,+...+x[(E xV xya)-n —~ (yaxV xE)-n]dS. (98)

We can now bring each term in Eq. (98) into the form of a scalar
product with the vector a and then completely eliminate this vector
from the problem. The second and third volume integrals can be trans-
formed into surface integrals:

a-/ Vx\Pdev:—a-/ ¥ x J.. dS, (99)
- Sid 42
/ v.[E@ V)] dv = —/ (n-E)a- Vy) dS
v Sit+ -4+ 2
- _a.[ (n-E) Vg ds. (100)
Sit -4z

To the surface integrals on the right-hand side of Eq. (98) we apply the
following transfermations:

[Ex(vxva)l-n=[Ex(V¢yxa)]-n=[nxE) xVy-a (101)
Y@xVxE):n= —jopy(a xH) ' n —y¢y@axJ.  n
= jopga - (n x H) + ¢da- (0 x Ja). (102)

Collecting these results, we obtain finally

[ (s T2 0)
=a- /;+ s [—jouy(n x H) + (n x E) x V¢ 4 (n- E) v¢]dS. (103)

Since Eq. (103) must hold for every vector a, the integrals themselves
must be equal. That is,

/ [—Jjouy(n x HY + (n x E) x V¥ 4 (n - E) W] dS

z
= / (jwu\I/J + Jn x V¥ — f v‘l’) dv — f [—jouy(n x H)
v’ € 4. 48
4+ (nxE) xVy + (n-E) v¢ldS, (104)

where for convenience we have split off the integral over the sphere Z.
In the limit as ¥ shrinks down on P, this integral will depend only on the
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field at 2. Thus we have a relation between the field at P and a volume
integral over the sources of the field, plus surface integrals involving the
field itself.

Next let us consider the integral over 2. On the surface of this
sphere we have

—jkr . 1\ =k
(V) = [di (sr )] n-— <]k + *> T (0)

The normal n is directed along the radius out from P. TLet dQ be the
solid angle subtended at P by an element of surface dS on X; the surface
integral can then be written

[, 0138 = — g [ fontn xH) + 4@ xB) xn o+ @Bl a0

=z

— gt / [(n xE) xn + (n-E)n]d@
= —jdrroe " (wun x H + kE) — 4re—#nE, (106)

where the overline denotes the mean value of the function over the sur-
face of the sphere. If now we let the sphere shrink to zero, the term
containing 7, vanishes because by hypothesis the fieid vectors are finite
in the neighborhood of P. At the same time E approaches Ep, the value
of the field vector at P. Thus

lim | [1dS = —4xE,. (107)

ro—0 J Z

In this limit the region V' comes to include the whole of the region V,
and Fq. (104) hecomes

E, = — 417r /; (J'w#M + Ju x VY — EV‘P> dv

~P—4i / [—joup(n x H) + (n x E) x V¥ + (n - E) wy]d8.
T J S48t 48

(108)

The analysis follows the same course for the magnetic vector H, with
the corresponding result:

1 . m
H, = —‘4;/‘,<]w5¢.]'m—]xv‘//_%v¢>dv

+4l7r /S+---—§ [jwue(n x E)Y + (n x H) x V¢ 4+ (n- H) vy]dS. (109)

The fields at the observation point P have thus been expressed as the
sum of contributions from the sources distributed through the region 17
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and from fields existing on the bounding surfaces. These latter surface
integrals represent contributions to the field from sources lying outside V;
specifically, the surface integral over a surface S; enclosing an exterior
volume V; represents the effect of sources within V.

Each of the three terms in the surface integral can be correlated with
a corresponding term in the volume integral according to the way in
which the function

e*jkr

v = (110)

r

is involved. In Eq. (108), for example, (n x H), (n x E), and (n - E)
enter the surface integral exactly as the electric-current density J, mag-
netic-current density J.., and the charge density p, respectively, enter the
volume integral; a similar correspondence will be observed in Eq. (109).
Thus the effects of sources lying in an exterior region V;, bounded by
the surface S;, are represented formally as arising from a surface distribu-
tion of charges and currents on the boundary S;, with surface densities

K = (n x H),
K, = —(Il XE),

7 = e(n- ), (i
7 = u(n - H),

E and H being the fields existing over that surface.

3-9. Field Due to Sources in an Unbounded Region.—We have now to
consider the case in which the region V is unbounded and the sources
of the field are confined to a region of finite extent. There is then only
one boundary surface S,, which we shall at first take to be a sphere of
large radius R about the point P, enclosing all sources of the field. Equa-
tions (108) and (109) then reduce to a single surface integral over this
large sphere S(R).

Let R, be a unit vector directed out along the radius of this sphere;
that is, let R; = —n. On introduction of this vector and the explicit
form of ¢, the surface integral of Eq. (108) becomes

1

in / [—joup(n x H) + (n x E) x V¢ + (n- E) W] dS
T J SR

ikn 1 : e\
- @] o = g [ fies oo+ (2) 6]

E| et
+R}—R—ds. (112)
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If we now let the radius R become infinite, the surface of the sphere
increases as R2. The surface integral will vanish as R — o« if the fields
satisfy the conditions

lim RE is finite, (113a)
R— «
Jim R [(R1 x H) + (5) E] = 0. (113b)

In the case of Eq. (109), the surface integral will vanish if

lim RH is finite, (113¢)
R— =
im R [(f> (R, xE) — H] = 0. (113d)
R w s

Conditions (113a) and (113¢) require that at large distances from the
sources, the magnitudes of the field vectors decrease at least as rapidly
as R~!. Conditions (113b) and (113d), the so-called “radiation condi-
tions,” ensure that all radiation across the bounding sphere consist of
waves diverging to infinity. This may be seen as follows: Taking the
scalar product of Eq. (113b) with R;, we obtain
lim (RE)-R, = 0. (114)
R—ow
The component of E in the direction R; thus diminishes more rapidly
than B~!'; we may say that E is perpendicular to Ry, to terms of the order
of 7. On the other hand, Eq. (113d) states that

lim RH = <i> (R: x ER). (115)
R M

It follows that to terms of the order of R~!, H is perpendicular to both
E and R, and E and H are related in the same manner as in a plane wave
progressing away from the center of the sphere S(R).

If (as will be shown in Sec. 311 to be the case) the fields arising from
sources confined to a finite region of space satisfy Eqs. (113) at infinity,
then the surface integrals over the infinite spheres vanish and the field
vectors in the unbounded region are given by

—jkr —jkr —rkr
Be= — g [ i T 4 gaxv () 2w () e arow

47‘rV r €

_ 1 . e—jkr e—]'kr O C*jkr
H: ar |y [Jwe]’m ; Ixv < - ) " v (, F)il dv.  (116b)

The fields are expressed here entirely in terms of the sources.
These fields can be expressed in terms of the current distributions
alone by use of the equations of continuity [Eqs. (32¢) and (32f)], which
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relate the charge densities to the current distributions. Thus Eq. (116a)
becomes

Epr = %/ [ k‘ZJ— + (V. _]')V-———}—]we]me( >:|dv 17
Twe |y
Let i, @ = 1, 2, 3 be unit vectors in the z-, y-, and z-directions, respec-
tively. Then
d [e 7\,
axa ('T) 1, (118(1)

e—]'kr
V-V — = z

o
a

Now

J e a ek
v . —— —)dv = — n- dS =0 (119
/V(R) (J dz, T ) .L(R) T, 0z, > (119)

as soon as R is taken so large that S(R) lies outside the region to which the
current distribution is confined. It follows that the first terms on the

right of Eq. (118b) contribute nothing to the integral in Eq. (117). Thus
we obtain

Er = — g V[(J * OV + k] — jwe]. x V] %ﬂ" dv.  (120)

4 we

Similarly, for the magnetic field we obtain

HP=

rro / [T+ OOF + k2T + jon] x %17 an. (121)
3-10. Field in a Region Bounded by Surfaces of Infinitely Conductive
Media.—A second case of importance is that in which the region V is
bounded by surfaces S; which are the surfaces of bodies of infinite con-
ductivity and by the surface S, at infinity. We again assume that the
fields at infinity satisfy the condition of Eq. (113). The integrals over
S, in Egs. (108) and (109) then vanish, and we have to consider only the
integrals over the surfades of the conductors. At the surface of an
infinitely conducting body the boundary conditions of Sec. 3'3 are

nxE =0, n-H =0,
n-E Z, n xH =K, (122)

n and K being the surface distributions of electric charge and current
Thus Eas. (108) and (109) become
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e-—jkr

dv

1 .
Er = — E V(]w/.LJ—gV‘f‘JmXV)
1 . 7 e ikr
4—7r s (]w#K - _€ V)—T— dS, (123)

__ 1 . Pm ik
HP—'—Z_’; V(]we]',,. TV—JXV)

dv

1
+4 /, va< )dS (124)

It will be observed that the expressions for the fields due to surface
currents and charges could have been obtained from the volume integrals
-as limiting forms, on considering that the volume distribution passes
into a surface-layer distribution.
The results of this section will form the basis for the general theory
of reflectors to be developed in Chap. 5.
3:11. The Far-zone Fields.—Let us now return to the case of the
unbounded region and examine in more detail the relations between the
field solutions

Er = 47rwe_[ [T - V)V + KT — juwem x V] - dv (3-120)
He == ﬁ  [An = 9V + B2F o+ jeu] x V]T dv  (3-121)

and the radiation conditions developed in Sec. 3-9.

These solutions are based on the assumption that the sources are
confined to a finite region of space. Let us choose an origin in the neigh-
borhood of these sources, and let ¢ be the vector from the origin to the
source element at the point z, y, z (Fig. 3-5). The vector from the origin
to the field point P we shall write as RR,, R, being a unit vector; similarly,
rry will be the vector from the source element to the point P.

In the integrands of Eqs. (120) and (121), the operator V acts on the
coordinates of the source element, whereas the point P is treated as a
fixed origin. For example,

V(ikr) (J’“ + )e T, (125)
and

g-9v () = [-ramn+ 2+ D g
J )] o

Thus the integrands in these equations are power series in r—!; for the
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first-degree terms in Eq. (120) we have

—1 —jkr

4736 fv k2] — k(T - 111 + kwem x 1] e—r’- dv.
In evaluating these integrals we must take into account the variation of
r and of the unit vector ry with the position of the source element.
In general this offers serious diffi-
z P culties, but simplifications can be
effected if the field point is at a
very great distance from the cur-
rent distribution and the origin.

First, the angle between the vec- -
tors r; and R, which decreases
with B~ can be neglected; r; can

\ be replaced by R, in the integrals.
T Next, the factor r~! in the inte-
- grand can be replaced by the con-

stant R~!, from which it differs by
the terms of the second order in
E~'. The variation of r cannot
be neglected wholly in the phase
factor. Here, making use of the
fact that r; and R are effectively
parallel, we write

Fic. 3:5—O0n the far-zone field: (a) arbi-
trary field point P; (b) simplifying relation-
ships for a point in the far zone. r=R —~ 0° Rl- (127)

With these approximations, Fqgs. (120) and (121) take on forms valid
for the far-zone fields:

Er = ;;% givE /‘[,[ J-J-R)R. + (i)/ In x Rl] etikeR gy
1
+ 0 <ﬁ2)’ (128)

18

Hy = — [ e fV {Jm — (Ju-R)R; — (-‘é) Tx RI] eeR: gy

+0 (%) (129)

The calculation of the terms of order R~? is tedious but straightforward
and will be left to the reader.

The integrals in Eqgs. (128) and (129) are independent of . Thus it
is evident that RE, and RH» remain finite as B — «, as required by
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the boundary conditions [Eqs. (113a) and (113¢)]. It is further evident
that the field vectors are transverse to the unit vector R,; the J term in
the integrand has a component in the direction of Ry, but this is always
canceled by subtraction of the second term (J-:R,)R;. A simple cal-
culation shows that the radiation conditions [Egs. (113b) and (113d)]
are satisfied; for example,

R, xH + (5) E = Z;% /V { —Jjwe(Ri x Jn) + jo(ue)*Ri x (J x Ry)
— Jw(en)* [J = (J - R)Ry] — joe(Jm x R1)} et#eRdy = 0. (130)

Thus, Eand Hare related as in a plane wave, being mutually perpendicular
and in a plane normal to R;.

We must now examine the integrals of Eqs. (128) and (129) in a little
more detail. We introduce the system of spherical coordinates R, 6,
¢, defined in Fig. 3-5, with polar axis along the z-axis. Let i, andi,
be unit vectors having the directions of increasing 8 and ¢ at the point
P; R, is, of course, the unit vector in the radial direction. In terms of
Cartesian components

o = zi, + yi, + 2, (131)
R, = sin 6 cos ¢i,; + sin 6 sin ¢i, + cos 6i,; (132)

thus
o*R, = (x cos ¢ + y sing) sin # + z cos 4. (133)

The components of the electric field vector along iy and i, are easily
found to be

. j . . e\ . .

= — i“’}‘z e Fy(8,¢) (134a)

.

and
bon = f 3 ) s
= — %e—f“"lf’g(ﬁ,@. (134b)

As indicated, the integrals are functions of only the angular coordinates
6 and ¢. The components of the electric field and the resultant far-
field vector have the form to be expected for a source located at the
origin. However, the far field is only a quasi-point-source field; the
equiphase surfaces are not the family of spheres of constant R because
the space factors F', and F, are in general complex. This is to be expected
because the choice of origin was purely arbitrary.
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The point-source character of the far field becomes more evident on
considering the power flow in the far zone. The Poynting vector is

S = %Re (E x H¥) = %(%)HRe [E x (R; x E¥)]
14
-3() mr v moR a3
or

=1 (“)H R 136
S—W y ¥(8,$)Ry, (136)

where
V(8,0) = |F1(8,4)]2 4+ |F2(6,0)|% (137)

The power flow is radially outward from the origin, with an intensity of
flow that falls off with the square of R and depends also upon 6 and ¢;
with respect to power flow the current distribution is, in effect, a directive
point source at the origin.

In discussing the power flow it is convenient to use, instead of the
Poynting vector, the power P(6,¢) radiated per unit solid angle in the
direction 8, ¢. This is given by

14
PO,¢) = RHS| = g (ﬁ) ¥(0,9), (138)
which is independent of the radial distance R. The angular distribution
of the power flow may be represented graphically by a three-dimensional
plot in spherical coordinates, in which the angular coordinates 6 and ¢
are those of the direction of observation and the radial coordinate is
proportional to P(8,¢). It is customary to normalize the maximum of
the power pattern to unity. The resulting figure is spoken of as the
‘“‘polar diagram” or “radiation pattern’’ of the current distribution.

The power distribution is also specified in terms of a gain function
G(6,$) with respect to an isotropic radiator, as defined in Chap. 1; in
terms of P(8,¢) we have

6(0,6) = £(0.4)

27 T
éﬁ AP(M) sin 0.d6 de
4% (6,¢)

I —
/ / ¥ (6,¢) sin 6 df do
o Jo

The maximum value of the gain function is termed the “absolute gain.”
In design specifications this is generally quoted in decibels above the gain
of an isotropic radiator (which is unity):

Gain in db = 10 log,, [G(6, ) ]mas (140)

(139)
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3-12. Polarization.—In the preceding section we have considered the
separate components E; and E, of the electric field vector in the far zone;
we have now to note some properties of the resultant field vector.

The factors F'1(8,¢) and Fo(8,¢) in the expressions for Es and E, are
in general complex quantities, which we may write thus:

F1(0y¢) = A1(0y¢)e_hl(a'¢>; (141(1)
Fy(0,0) = As(6,9)e 09, (141b)

Here the A’s and v’s are real, and v; and 7. are in general not equal.
The vector Er is thus the resultant of a pair of time-periodic vectors
Eds and E,i, at right angles to each other, with relative amplitude and

E

ﬁq— ag Ccosd

o, C0S 8
'S o

(@

Fia. 3-6.—Elliptical polarization: (a) orient.tion of the ellipse; (b) right-handed polariza-
tion; (¢) left-handed polarization, with direction of propagation toward the reader.

phase which vary with 6 and ¢. This resultant vector Ep simultane-
ously rotates in space and varies in magnitude in such a way that its
terminal point describes an ellipse; the radiation field is elliptically
polarized. To show this we note that the real parts of Eeett and
Egei«t) as given by Eq. (134), are the real Eo,- and Ez-components of the
electric field. These become, on use of Eqs. (141),

B = ‘ﬂi%@ sin (wf — kR — v1) = assin (wf — kR — v1),  (142a)

E, = % (wt — kR — v2) = ay sin (wf — kR — 4y — &), (142b)
where § = v; — v, is the phase of E; with respect to Es. Expanding
the sine term in £, and eliminating the terms involving wt — kR — v,
we obtain a relation between E, and E, that holds at all times:
2 2
5 + E 2 cos b Eo By

af ag g

= sin? &. (143)

This is the equation of an ellipse traced out by the terminus of the
vector Er.  The relation of the ellipse to the component vectors is shown
in Fig. 3-6. The sense of polarization is defined for an observer watching
the oncoming wave: The polarization is termed “right-handed’” or “left-
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handed’ according as the terminus of the vector Er traces out the ellipse
in the clockwise or counterclockwise sense, respectively.

If the phase difference § is an odd multiple of 7/2 and the amplitudes
are equal, the ellipse becomes a circle; right-handed and left-handed
circular polarization are defined in the same manner as for elliptical
polarization. If the phase é is an integral multiple of =, the ellipse degen-
erates into a straight line traced out by a linearly polarized resultant.

As 6 and ¢ are varied, both 5(8,¢) and E;/Ey will vary; the polariza-
tion of the radiation from an extended source may change from linear
to elliptical to circular and back again as one changes the direction of the
observation.

3:13. The Electric Dipole.—In the preceding sections we have seen

2 how a radiation field arises from a

distribution of time-varying currents.
We now turn to a discussion of some

+q T special idealized current distribu-
T . . .
5 ) ¥ | tionsandtheirassociated electromag-
/4 q ¢ netic fields, leaving aside the question
of their physical realizability.
z

The most elementary form of

@ () J— . . .

o idealized radiator is the oscillating
Fiag. 8:7.—The electric dipole: (a) . R s A
mathematical dipole; (b) antenna repre- electric dipole (Fig. 3-7). A dipole
sentation of a dipole, I < < A. consists mathematically of a pair of
equal and opposite charges, each of magnitude ¢, separated by an infi-
nitesimal distance 8. If the vector & is directed from —gq to +gq, the
dipole moment of the dipole is defined to be the vector

P = gb. (144)

An antenna equivalent to a dipole is shown in Fig. 3-7. Tt consists
of thin wires terminated in small spheres, the over-all dimensions of the
structure being very small compared with a wavelength. The spheres
form the capacitive element of the structure, and the charge at any
instant can be considered to be localized on them. If the antenna is
energized by a harmonic emf applied across the gap at the center, the
charges on the spheres are given by

g = qoe™';’ (145)
the magnitude of the dipole moment of the antenna is
P = qoleit = peit, (146)
with amplitude
Do = qol.

Since I « )\, the current at any instant may be taken to be the same at
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all points along the wings of the antenna. The current I is related to
the charge ¢ by I = dg¢/dt = jwg and to the magnitude of the dipole
moment by
Il
=
The electromagnetic field set up by a dipole is best described in
spherical coordinates with the origin at the center and the polar axis
along the axis of the dipole (Fig. 3'8). The derivation of the field will
be found in any text on electromagnetic theory;' we shall simply state
the results:

(147)

B = 2,1? C‘ + Z«‘k> C0S8 poei~H, (148q)
y 2
Hy, = ¢ (} + J%) sing poei‘e=n). (148¢)

As a consequence of the axial symmetry of the radiator, the field is inde-
pendent of ¢. It can be resolved into three partial fields according to
the dependence on r: (1) the
“static field”” varying inversely
with r3, (2) the “induction field”
varying inversely with r2, and (3)
the “radiation field”” varying in-
versely with r. The static field
is, in fact, that which would be
computed for a static dipole with
fixed moment pee’“=*>, The in-
duction field is the quasi-station-
ary-state field commonly observed
in the neighborhood of circuit ele-
ments at low frequencies; the
magnetic component of the induc-  Fia. 3-8.—Field of an electric dipole oriented
tion field is that which would be along the z-axis.

calculated on the basis of the Biot-Savart law for stationary currents.
At small distances from the dipole the static and induction fields predom-
inate. At a distance,

1 X\

the radiation field becomes the leading term, and at sufficiently large
distances the static and induction fields become negligible relative to

?

! For example, J. A. Strutton, Eleciromagnetic Theory, McGraw-Hill, New York,
1941, Chap. VIII.
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the radiation field. However, 1t is only at distances much greater than
r = N\/2r that one can entirely neglect the static and induction fields.

The radiation field represents a flow of energy away from the dipole.
‘There is no corresponding energy loss in the static and induction fields;
the energy associated with these fields pulsates periodically back and forth
between space and the antenna and its associated circuit just as do the
energies in capacitances and inductances at low frequencies. The far-
field Poynting vector computed by Eq. (43) arises entirely from the r—!
terms in the fields. It is

70° 80° 90° 100° 110°

sin? @,
in (149)

_ wk? 2
S = g3 v 2

where i, is the unit vector in the
120° outward radial direction.

The dipole is a true point
source because the equiphase sur-
faces are spheres with centers at
the origin; it is directive because
the intensity of the field varies
with the direction of observation.
160> The power pattern of the dipole is

AN - Bt

Fie. 3-0.—Meridional polar diagram of the 1N any one meridian plane, like

power pattern of an electric dipole. that shown in Fig. 3-9. In design
specifications it 1s customary to characterize such cuts in the
three-dimensional polar diagram by two widths if they exist: (1) the
“half-power width” ©, which is the full angle in that cut between
the two directions in which the power radiated is one-half the maximum
value, and (2) the “tenth-power width” © (Jy), the angle between the
directions in which the power radiated is one-tenth of the maximum.
These widths for the meridional polar diagram of an electric dipole are

130°

140°

o

0 = 90°,
O(dy) = 146°

Since the pattern is uniform in azimuth, the polar diagram in a cut taken
normally to the dipole axis is a circle. The gain function of the dipole
[Eq. (139)] is

G(6,¢) = §sin? 6, (150)

and the absolute gain is

Gn = (3 = 1.76 db. (151)
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The impedance presented by the dipole to its feed line consists of a
resistive component and a reactive component. We shall here consider
only the resistive component, which corresponds to the power dissi-
pated by the dipole. There are two elementsin the power dissipation: (1)
ohmic losses in the conductors of the dipole structure and (2) power
radiated to space. In the idealized case, to which we restrict ourseives,
the dipole consists of perfectly conducting elements. There is then only
radiation loss to consider; the resistive component of the impedance is its
radiation resistance. Let P be the average power radiated per unit time.
The radiation resistance R, is defined by

P = 3|1k, (152)

where I, is the maximum value of the current. The radiated power P
is computed by integrating the Poynting vector [Eq. (149)] over a com-
plete sphere. By use of Egs. (147) and (152) the radiation resistance is

then found to be
272 ¥
R, = ’% (’.‘) . (153)

€

3-14. The Magnetic Dipole.—The magnetic counterpart of the electric
dipole antenna is a current loop with radius
small compared with the wavelength (Fig.
3-10). Such a current loop is equivalent to a
magnetic dipole along the axis normal to the
plane of the loop; this axis has been taken to m

be the z-axis in the figure. If I is the current
in the loop and A is a vector normal to the % 51 4

z

locp, with magnitude equal to its area, the
magnetic moment at any instant is z

Fia. 3:10.—Magnetic di-
m = JA. (154) pole antenna: current loop and
. . . L equivalent magnetic dipole.
If I,is the amplitude of the time-periodic cur-

rent and mo the ecrresponding amplitude of the magnetic moment, the
magnitude of the magnetic moment is given by

m = Ieri‘” = moeie!. (155)
The direction of the dipole in relation to the direction of the current is
shown in Fig. 3-10.

The field of the magnetic 4 »ole, like that of the electric dipole, is
most conveniently described in spherical coordinates. The field com-

ponents are
2 2! ;
Bo = iz (E) (1 - if]rz) sin 6 moeret, (156a)

€ r
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(1 gk otk

H, = 5 (773 + 7'7) €08l moeiwtTF, (1560)
1 (1 Gk k2. _—

Hﬂ = ‘Iﬂ: <;3 + ﬁ _ 7—) sinf mge’( t~k ). (156(‘)

As with the electric dipole, the field is independent of the azimuth
angle ¢. Comparison of Egs. (156) with the electric dipole field [Egs.
(148)] will show that the roles of E and H are interchanged. With minor
revisions required by this interchange, the discussion of the electric
dipole as a directive point source can be carried over to the magnetic
dipole. The power patterns are identical, and the absolute gain of the
magnetic dipole, like that of the electric dipole, is 1.76 db.  The radiation
resistance of the loop is found to be

_ 7{ H - 542 n
R, = o <6—> kA2, (157)

The reader should note that the far-zone fields of the electric and
magnetic dipoles show the general properties mentioned in Sec. 3-11.
In particular, he should note that in the far zone (and there only)

H = <§> (i, xE); (158)
E and H are mutually perpendicular and lie in a plane transverse to the
direction of propagation.

3:18. The Far-zone Fields of Line-
current Distributions.— We shall next
compute the far-zone fields due to a time-
periodic cuwrrent in a thin straight wire
extending along the z-axis from 2z = —{/2

y toz = -+1{/2, that is, along the polar axis
of the r, 8, ¢ coordinate system. We
shall allow the length of the wire to be
comparable to a wavelength or even equal
to a number of wavelengths. The phase
differences between the cuwrrents at sepa-
rated points on the wire will then he sig-
nificant, and we shall need to consider the
current to be a function of position along the wire:

I(z)dz—

A=Z cos 8

I'1g. 3-11.—Far-zone field of a line-
current distribution.

I = I(z)e™1,, (159)

Since the properties of the field in the far zone are those of a plane
wave, it will be sufficient to calculate the electric field intensity. In
Eqgs. (134) we can first of all discard the magnetic-current density J.
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We note further that J - i, is zero; consequently,

E, =0 (160)
By Eq. (133), with z = y = 0, o - R is simply 2 cos 8, and the volume

integral for Ky degenerates into a line integral:

. 1/2
Ey = — i—;‘% eIk /—1/2 I(2)i, - igete o=t dz, (161a)

or

4R
= Z%% e~*RF(6). (1615)

» /2
Ey = + I8 gmrn / 1(2) sind eit===* dz
—-1/2

(As usual, the time factor e/t is understood implicitly.)

Again, because of the axial symmetry of the radiator, the field is
independent of the azimuth angle ¢. As with an electric dipole, the
electric-field vector lies in the meridian plane; the magnetic-field vector
is at right angles to this, parallel to is. The function F(8), known as the
“form factor’ of the field pattern, will in general be complex; the equi-
phase surfaces are not spheres of constant R.

The integral expression in Eq. (161b) admits of an interesting inter-
pretation. On comparing the integrand with the far field of an electric
dipole [Eq. (148)] it will be noted that the integral can be interpreted
as a sum of the fields of a distribution of dipoles along the wire, the dipole
moment dp associated with the element of conductor dz at the point z
(Fig. 3-11) being given by

1 .
dp = 7o I1(z) dz1.. (162)

In superposing the component fields at the field point one must, of course,
take account of the phase differences between the econtributions from
different dipole elements, due to the differences in path length to the
field point. If A is the path difference between two elements, the phase
difference is 2rA/» = kA. Taking the origin as a reference point for
path length, the path difference corresponding to a point z on the wire
is A(z) = z cos 6; hence the phase factor ¢/*2°#¢ in the integrand. It will
be noted that Eq. (162) is essentially the relation between the current
and dipole moment set down in Eq. (147).

The precise form of the current function I(z) can be controlled by
changing the point at which the driving voltage is applied to the wire
and the way in which the wire is terminated. We shall now consider
the case in which the wire is driven at the center, for example, by a
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parallel-wire line feeding across a small gap at the origin, and there is
no load at the ends of the wire. In this case the current is necessarily
zero at the ends of the wire; its distribution along the wire can always
be expressed as a sum of standing waves, each of which vanishes at the
ends. Such standing waves have the form

I.(z) = Iy(m) cos @Z’f m=1,35 -,
e

l

(163)

I = Io(m) sin ™72, m =246, - - -,

where Io(m) is the value of the current at a current antinode. In general
the current will consist of a superposition of standing waves. It will,
however, consist of a single standing wave if I = mX/2; this is the case
which we shall treat. Substituting the corresponding I(2) into Eq. (1618),
one finds with little difficulty

2rR sin 0

’

14 To(m) sin%zE cos (? cos 6)

E, =7 (2 ' */
=i(t)

m=1,3,5 ---, (164a)

15 Lo(m) cos mr sin (Zn—r— cos 9)
Eﬁ — (I'_l') 2 —ikrx | _ N 2 S

’

m=24, - -. (164b)

€ orR ¢ sin 6

The term “form factor’ is here applied to the terms in brackets. The
surfaces of constant R are equiphase surfaces; the far-zone field of a
standing-wave current is that of a true point source at the center of the
current distribution. The field intensity in the equatorial plane § = /2
is zero when m is an even integer because the current distribution is
antisymmetrical with respect to the origin; the contributions to the field
from current elements at 4z and —z are 180° out of phase at points in the
equatorial plane and there annul each other.

3:16. The “Half-wave Dipole.”—The most important line-current
distribution in microwave antenna theory is that with 7 = 2/2. This is
usually called the “half-wave dipole”—a misnomer due, perhaps, to its
diminutive structure at microwave frequencies and here retained hecause
of its convenience. On setting m = 1 in liq. (164a) we obtain the field
pattern of this radiator:

; COS (?t CO8 0)
o [L E Ioi —kn ’ 2 ' ) .
E, —]<E> orpp € : (165)

SHE
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The corresponding power pattern is

1% 7o | COS 7 cos 0) ’
P(6,¢) = (“)é L -—(1—— : (166)

e/ B8t sin @

The pattern differs only slightly from that of the electric dipole; it is
uniform in azimuth and has its single maximum in the equatorial plane.
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FiG. 3-12.—The half-wave dipole: (a) current distribution along the wire; (b) meridional
polar diagram compared with that of the electric dipole: — —)-2\ dipole, --- infinitesimal
dipole.

Figure 3-12 shows the meridional polar diagram in comparison with that
of the dipole. The gain of the half-wave dipole is

G. = (1.65) = 2.17 db. (167)

The slight increase in directivity over that of the electric dipole arises
from the fact that at points off the equatorial plane there is partial
destructive interference between contributions from different portions
of the wire, which lie at different distances from the point of observation;
this leaves the radiation in the equatorial plane relatively stronger.

3-17. Superposition of Fields.—We shall often have occasion to deal
with sources that consist of a number of separate current distributions.
As long as the total system is confined to a finite region of space—the
only practical case—this problem is in principle covered adequately by
the general theory of Secs. 3-9 to 3-11. It will, however, be useful to
reconsider it from the point of view of the superposition principle stated
in Sec. 3-2. The total field is the sum of the component fields due to
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each component current system. We shall confine our attention to the
far-zone fields, existing at field points far removed from every source in
the total system.

The notation to be employed is illustrated in Fig. 3-13. We choose
an origin O within the neighborhood of the sources; a primary system
of rectangular coordinates x, y, and z; and an associated spherical system
r, 8, and ¢. The distance from the origin to the field point will, as before,
be R; Ry is a unit vector in that direction. In connection with any of the
component radiating systems, say the 7th, we use a secondary coordinate

2}
E‘a1
2
[} N, Eoz
I | E¢
0, t 2
N <
4
e’s
¢ 11
2
o Q:Q: R2
1 -y
7 N

z
Tra. 3-13.-—Superposition of fields.
system, with axes parallel to those of the primary system and origin O,
within that source distribution at the veetor position R; with respect to
0. The polar coordinates of the field point P in this secondary coordi-
nate system will be denoted by r;, 8;, ¢.

As in the general discussion of far-zone fields, we may consider all
the O.P to be parallel to OP and all the §;, ¢; to be equal to 6 and ¢ respec-
tively. Furthermore, the field due to the ¢th radiating system can be
expressed in terms of an equivalent quasi-point source at 0. That is,
the component fields are, by Eqs. (134),

[ [T, N kR
By, v, ¢ /I [L i + (u) Toi 1¢] eFeRe gy

= g‘l—(:?ﬂ ek Fl;(9)¢)y (lﬁga)
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. %
Wi . € . £0-Ro
Bo. = iTr.—e " /v [J""’ - (ﬁ) J”"'"] et de

= — OB nnp,.(0,0). (168b)
47['7','

and

The total field is obtained by summing the component fields. We
note, however, as in the discussion in Sec. 3-11, that we can replace ;' by
R-1, with an error of the order of B~2; in the phase factors we can simi-

’

larly write

ry = R - Ro . Ri. (169)
The total field is, therefore, given by
Es = z B = — [ eingi(o,9), (170a)
where
F1(0,¢) = 2F11(9,¢)ef"‘*°"“, (1700)
and
E, = z By = = 1% ci15,(6,9), (171a)
where
51(6,6) = Z Fas(6,8)e R, (1718)

t

The space factors §, and F, are complex, and the discussion of polariza-
tion in Sec. 3-12 applies without change.

The problem is thus reduced to the superposition of quasi-point-
source fields arising from sources 0; and described by the space factors Fy
and F;. The composition of the over-all space factors F; and &, in
terms of these and the phase differences arising from the relative positions
of the sources is a procedure useful in many other fields—for example,
the theory of X-ray diffraction.

3-18. The Double-dipole System.—The radiation patterns of com-
pound systems are usually more directive than the patterns of the
component systems; destructive interference between the fields of the com-
ponent systems takes place in certain directions, constructive interference
in others, with the consequence that the total power density changes
more rapidly with angle and reaches more extreme values than does the
power density for any component system.

An important compound system with wide application to microwave
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antennas is obtained by superposing two half-wave dipoles. We shall
here restrict ourselves to the case in which the dipole axes are parallel
and the currents are of equal strength, though of arbitrary relative phase.
We consider, then, two half-wave dipoles with centers at (0, —a/2, 0)
and (0, a/2, 0) and axes parallel to the z-axis, carrying currents of ampli-
tudes Io and I, (Fig- 3-14). Since neither source gives rise to an

4
1 Eg,
E,
02
Ly, RR,
%n
]
8
1 YA y
i i - l
I/ ]oe"?d’
a3

x
F1a. 3-14.—The double-dipole svstem.

E-component in the far field, the total field can have no sueh component.
The space factors of the dipoles are alike, except for the current phase
term e=¥. Combining Eqs. (165) and (170b), we find the resultant field:

™
14 . cos | 5 cos §
A sl (2 ) . )
Eo=y <‘) 2nR S R  gOReRO] (179)

On making the substitutions

Ro'R, = —gsinﬁsin o,
a (173)
Ri- Ry = - sin 8 sin ¢,

2
we obtain finally

i
1 : cos | 5 cos @
. 2 [oe—ikR+(pr2)] (2 ) )
Ey=3 (") o cos (7%1 sin fsin ¢ ~ g) (174)

P R sin

This is a dipole field modified by the presence of the last factor. The
spheres of constant R are the equiphase surfaces; at large R the field is
that of a directive point source at the origin midway between the dipoles.
The pattern is symmetrical in ¢ about ¢ = x/2 and in 8 about § = x/2;
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that is, it is symmetrical with respect to the yz-plane, which contains the
dipoles, and the zy-plane, to which they are perpendicular. These
planes of symmetry are known, respectively, as the principal E-plane
and the principal H-plane of the radiation pattern. Since the pattern
is a function of both # and ¢, a three-dimensional polar diagram is required

+90° +80° +70° +60° +70° +80° +90°
+50°+ 600
08
+40°+50° 06
94.40%
+30 04
+200%30°
0.2
+20°)
+10° Y
+10%
-10°
~10°
-20°
—20°-30°
-90° 70° -50° —40°  -30° -40° -50°  ~70° -90°
H=plane E=plane
Fig. 3-15.—E- and H-plane polar diagrams in the power pattern of the double-dipole

system.

for a complete presentation of its properties. However, in practice it is
usually sufficient to consider the principal E- and H-plane cuts.

The details of the pattern depend on the precise values of ¢ and ¥.
We shall here consider one special case, in which @ = A/4, and y = x/2.
The form factor is then (except for constant terms)

cos (g cus 0)
F(0,6) = cos [}: (1 — sin 6 sin ¢)]- (175)

sin 6

The principal E- and H-plane cuts of the power pattern (proportional to
the square of the form factor) are shown in Fig. 3:15. Only a small
fraction of the power is radiated in the hemisphere to the left of the
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zz-plane; no power is radiated in the negative y-direction; maximum
power in the positive y-direction. In the negative y-direction the radia-
tion from the dipole at ¥y = +0a/2 must travel a distance greater by a
quarter wavelength than the radiation from y = —a/2 with resulting
phase retardation of 90°. Since the current in the first dipole is 90°
behind that in the other dipole, the fields from the two dipoles are 180°
out of phase and annul each other. In the positive y-direction, the phase
retardation in the field from the dipole at y = —a/2, due to the additional
path length traversed, is just compensated by the 90° phase lead of the
radiating current; the fields from the two dipoles are in phase and rein-
force each other. Since each dipole has maximum field intensity in the
zy-plane, this has the consequence that the maximum in the total field
intensity lies in the +y-direction.

As a measure of the directivity of the power pattern, we may take the
half- and tenth~-power widths of the polar diagram in each of the principal
planes. These are designated by ©r and ©x({s) for the E-plane half- and
tenth-power widths respectively; corresponding notation applies in the
H-plane. For the system under consideration

Or = 76°, On = 180°,
Ox(fy) = 130°, Oulgs) = 252°. } (176)

3-19. Regular Space Arrays.—The double-dipole system is the sim-
plest possible example of an important class of directive systems: regular
space arrays of similar radiators. let us consider a system of current
distributions, identical in structure but perhaps differing from one another
in over-all amplitude and phase. The radiating units need not be simple
dipoles; they may be double-dipole systems or more complex current
systems, but all must have the same orientation in space and be described
by similar space factors F.(8,¢) and Fa(6,¢), with respect to similarly
situated origins O;. Now let these radiating units and their origins O;
be arranged into a space array at the intersection points of a three-
dimensional rectangular lattice (see Fig. 3-16). Let a;, a,, and a; be
the basis vectors of the lattice in the a-, y-, and z-directions, respectively,
and let the extents of the lattice in these directions be Na;, Naas, and
Nias. Choosing one of the corner elements of this lattice as a reference
point, we can specify the position of an arbitrary lattice point O; by the
relative-position vector

R; = nja; + nia: + nsas, asw7)

where n,, ns, and ns are integers less than or equal to Ny, Ny, and Ny,
respectively.  We shall let the amplitude of the ¢th svstem be Apnm.
and shall admit the possibility of a progressive phase delay in each of
the three basis directions of the lattice: the phase of the 7th radiating



Skc. 3-19] REGULAR SPACE ARRAYS 105
system, relative to the reference system, shall be

'l/ﬂmzﬂ; = n1¢1 + nng + na\#s- (178)

We need consider only the space factors &, and F, defined in Eqs. (1700)
and (171b). The space factors Fy; and ¥ are independent of ¢ except for
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F1G. 3:16.—The space array.

the constant multipliers A.mm.e ¥ mm,  Accordingly, the space factors
for the system as a whole are given by

s;1(0;‘1’) = F1(0’¢)A(0y¢)r} (179)
52(0;‘#) = F2(07¢)A(0:¢)7
where
Ny N: N, 3
A(9,¢) = 2 E E Anmzm exp [] z Ni(kRo ca; — ll/;):l (180)
m=0n1=0n1=0 i=1
Here
Ro-a; = ¢;sin 6 cos ¢ = au,, (181a)
Ry:a; = ap sin 0 sin ¢ = azu,, (181b)
Ry-a3 = a3 cos 6 = Q3Us. (181¢)

The total space factor is thus a product of the space factor for a radiating
unit by a lattice factor. The lattice factor, it will be noted, is itself the
space factor of a fattice array of isotropic radiators with relative ampli-
tudes A,.n:m. and relative phases Yo, nn,.

If the radiating units all have the same amplitude, say equal to unity,
the sums in Eq. (180) can be evaluated. The term on the right becomes
a product of three factors:

A(al ¢) = AlAzAS, (182)
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where
Ni

A; = z eini(kaivi—gi) (183)

ni=0

This geometric series is easily summed. One finds

(N1 D) (Rainsi—g) sin Ni;- L (kau: — i)
T T e sin ¥ (ka: — ) (184)
The power pattern of the space array is proportional to
F1]% + |Fof?

and is consequently given by

except for the multiplicative constants. The second factor is the product
of three factors,

sin (N; + 1) (’"““ ﬁ") :

2
TAU; \h
n (T B 5)

each of the form sin Nz/sin 2. Such a function has principal maxima
at x = hm, h being an integer; if N is large, the maxima are very sharp,
the function being only slightly different from zero between successive
peaks. The composite lattice factor will then have its principal maxima
only for those values of u; for which the three factors simultaneously
achieve their maximum values, that is, when

‘A"P = (7' = 17 27 3): (186)

u; = sin 8 cos ¢ = (h1 + 4 )aA (187a)
up = sin 8 sin ¢ = (hz + ‘/Iz)a—i\ (187b)
- ‘/’3
uz = cos 6 hs + (187¢)
aa

h1, he, hs being positive or negative integers. These conditions cannot
be satisfied simultaneously by any choice of 8 and ¢ for arbitrarily chosen
h1, ha, hs; the possibility of simultaneously satisfying the three conditions
is determined by the values of the phases ¥; and the lattice dimensions
a;/X\. Except when P(6,¢) has a zero in direction 8, ¢ determined by
the above conditions, the lattice space factor of a very large lattice deter-
mines, essentially completely, the direction of the principal maxima in che
total radiation pattern.




CHAPTER 4
WAVEFRONTS AND RAYS

By S. SiLver

The preceding chapter dealt with radiation fields in their direct rela-
tion to the sources. It was found that the field represents a flow of
energy outward from the region of the sources; also it was demonstrated
separately that the energy flow in a time-varying field is a wave phe-
nomenon. We now turn our attention to the study of wave propagation
and the associated energy flow, without direct reference to the sources.
Several simple waveforms have already been discussed: plane, cylin-
drical, and spherical waves. In each case the wave was described by a
family of equiphase surfaces or wavefronts, and the propagation of the
wave was visualized as a progression of each wavefront into a contiguous
one; furthermore, the energy flow at every point was in a direction normal
to the wavefront. The main subject of this chapter is the extension of
these ideas to general waveforms,

4.1, The Huygens-Green Formula for the Electromagnetic Field.—
We have now to consider the following problem: Given the values of the
electric and magnetic field vectors
over an equiphase surface, how can
we determine the field vectors at a

specified field point? o o
The solution to this problem is,
in fact, contained in the general r

integral of the field equations ob-
tained in Sec. 3-8. Let the fields be
specified over an equiphase surface S
(Fig. 4-1) which encloses all sources
of the field, and let P be the field point at which the vectors E and H are
to be determined. We naw apply the general relations of Eqs. (3:108)
and (3-109) to the region bounded by S and the sphere at infinity. Since
the sources of the field lie outside this region, the volume integrals vanish
and we have

)

F1G6.4:1.—On the Huygens-Green relation.

Ep = % /s[—jwn(n xH)y + (0 xE) x V¢ + (n-E) v]dS (la)
107
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and

Hy = % /S[jwe(n xEW + (n xH) x V¢ + (n-H) vwy]dS, (1b)

where ¢ = ¢=#7/r and n is the unit vector normal to S indicated in Fig.
4-1. These equations provide the solution of the stated problem.

FEquations (1) may be regarded as an analytical formulation of the
Huygens-Fresnel principle, which serves generally as a basis for the study
of wave propagation. The Huygens-Fresnel principle states that each
point on a given wavefront can be regarded as a secondary source which
gives rise to a spherical wavelet; the wave at a field point is to be obtained
by superposition of these elementary wavelets, with due regard to their
phase differences when they reach the point in question. Equations (1)
specify the nature of the wavelets arising at the various points on the
equiphase surface;! as was pointed out in connection with Eq. (3-111),
the sources of the wavelets can be regarded as surface layers of electric
and magnetic currents and charges.

For the further purposes of this chapter it is desirable to write the
surface integrals in somewhat different form. By means of a rather.
laborious calculation they can be transformed into

_ 1 ( OE Loy
Ep = — E s\ %‘ E 5];,) dS (20,)
and
1 oH EW)
Hr = — - S( %—H%>ds, (2b)

respectively.? Relations of the same form must, of course, hold for the

t A comprehensive treatment of Huygens’ principle and its application to scalar
and vector waves has been given by Baker and Copson, The Mathematical Theory of
Huygens' Principle, Oxford, New York, 1939. It should be noted that the integral
expression for the fields, and hence the interpretation of the sources, is not unique;
it is possible to aad vo Egs. (1) any surface integral that is equal to zero. This is
actually done in making the transformation from Egs. (1) to Eqs. (2) in this chapter.

2 This transformation can be effected only if the surface § is completely closed;
otherwise additional terms appear. The results can be obtained by a simpler and for
our purposes more useful procedure than by direct transformation of Eqgs. (1). It was
shown in Sec. 3-6"that in a source-free region each rectangular component of a field
vector satisfies the scalar Helmholtz equation

Viu + k*u = 0.

The integration of this equation can be performed by means of Green’s theorem in a
manner analogous to that by which we integrated the field equations. The scalar
Green’s theorem states that given two continuous scalar functions F and G »aving
continuous first and second derivatives in a region V such as was illustrated in Fig. 3.4,
then
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components of E and H in any rectangular coordinate system. We can
therefore develop most of our considerations in terms of the scalar

relation
up = 41 < ou _ ‘”)czs 3)
T

where u will stand for any one of the rectangular components of E or H.

Equation (3) can be regarded as the mathematical expression of
Huygens' principle for a scalar wave; the resultant wave amplitude at P
is again expressed as a sum of contributions for the elements of surface
dS. The first part of the integral is a summation of terms of the form
(e=*/r)(du/In) dS—a summation of the amplitudes of isotropic spherical
wavelets arising from sources of strength proportional to (du/dn) dS on
the surface elements dS. The second part of the integral can be inter-
preted similarly. We note that

g_i = %(e;ﬂ”) cos (m,r) = (_]k + )l cos (m,r), (4)

because the field point P is the origin in the integral formulation. The
second part of the integral is thus a summation of anisotropic wavelets
from sources of strength proportional to « dS on the surface elements dS.
The directivity of the sources is expressed by the factor cos (n,r); each
wavelet includes a term for which the amplitude falls off with 2, like
the induction field of a dipole source. Substituting this result into Eq.
(3), we obtain

r

1 e—ikr . 1 9
ur = — g | [u <]k + f) cos (n,r) + a_ﬂ ds. (5)

Despite the arbitrary feature of the integral formulations pointed out
in the footnote on page 108, we shall consider the Huygens-Green rela-
tions [Egs. (1) and (5)] as the analytical formulations of the Huygens-
Fresnel principle for electromagnetic and scalar waves respectively. It

fv (FV'G — GVF) dy = — (F—— "y ) ds.

The co vention as to the direction of n is the same as shown in the figure. Let F be
the spherical wave function y = ¢~ /r and G the function u satisfying the Helmholtz
equation for the same value of k. The field point P is again surrounded by a sphere E,
the radius of which later is allowed to approach zero. In the region bounded by
Siu. .. 8. and T the volume integral vanishes. The details of the limiting process
that is then applied to = follow very closely those for the vector case; the result gives
the value of « at the field point P, namely,

- _u ¥
up = /14 (ll' uan)dS.
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should be emphasized that according to the Huygens-Fresnel principle,
there 1s no one-to-one correspondence between the field at the point P
and the field at any point on the wave surface; the field at P is an inte-
grated effect of contributions from every point on the wave surface.

4.2. Geometrical Optics: Wavefronts and Rays.—The Huygens-
Fresnel principle, as expressed by the Green’s theorem integrals, gives a
rigorous solution of the wave equation. It is frequently convenient,
however, to approach the subject of wave propagation from the less
rigorous point of view of geometrical optics, in which attention is focused
on the successive positions of equiphase surfaces, or wavefronts, and an

associated system of rays.
Layz)=Lo+bL Let the wavefront at time ¢,
.. be the surface L(x,y,z) = L, of Fig.
‘ 4-2 and the new wavefront after
‘ passage of a very short time & be
‘ the surface L(z,y,2) = Lo + 3L.
‘ Geometrical optics is then con-
cerned not only with the form of
. these surfaces but also with a
point-to-point transformation
from one wavefront into the suc-
ceeding one. This is, of course, in
“ fundamental contrast to the point
of view of the Huygens-Fresnel
principle.! The point-to-point
correlation of the wavefronts is
established by the “rays,” a family of curves having at each point the
direction of the energy flow in the field. In the case of electromagnetic
waves, a ray can be traced out by proceed.ng at each point in the direc-
tion of the Poynting vector at that point. The rays are nearly normal to
the wavefront—exactly normal in the wave systems to be discussed in this
volume—and pass through corresponding points in successive wavefronts.

In an arbitrary medium the wave field is characterized by a ray
velocity and a wave velocity at every point. The ray velocity is the
velocity of energy propagation; it is represented at each point by a vector
that is tangent to the ray passing through that point. The wave velocity,
on the other hand, is always normal to the wavefront; it is the rate of
displacement of the wavefront in the direction normal to that surface.
Thus if v(z,y,2) is the wave velocity at a point (x,y,2) of the first wave-

FiG. 4-2.—On the propagation of a wavefront
in geometrical optics.

1 Treatments of geometrical optics as a self-contained theory are given by J. L.
Synge, Geometrical Optics, Cambridge, London, 1937, and by Ph. Frank and V. Mises,
Differential-gleichungen der Physik, Vol. 11, Chap. 1, reprinted by Mary 8. Rosenberg,
New York. 1943.
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front in Fig. 42, tne vector v 8¢ will extend from that point to the cor-
responding point on the second wavefront. The case illustrated is that
of an inhomogeneous medium in which v(z,y,2) is a function of position.

In an anisotropic medium the ray velocity and wave velocity differ,
in general, both in magnitude and direction; in isotropic media the
ray velocity and wave velocity are identical. We shall here restrictour
attention to isotropic but possibly inhomogeneous media; more gen-
eral discussions will be found in the references of the footnote on page 110.
As a result of the identity of the ray velocity and wave velocity, the rays
in an isotropic medium make up a family of curves orthogonal to the
family of wavefronts; the energy flow at any point is normal to the wave-
front passing through that point.

The form of the wavefronts and rays can be determined as soon as the
function L(z,y,2) is given. This function is not uniquely determined by
the foregoing remarks. We shall, in addition, require that it be chosen so
that the wavefront L(x,y,2) = Lo shall be one of constant phase (w/c)Lq
relative to the phase at some chosen point. The function L(x,y,z) thus
defined is of basic importance in the analytic theory of geometrieal optics.
It satisfies a differential equation which we shall now derive.

The phase increment between the two successive surfaces of Fig. 4-2
is (w/c) 8L. Moreover, since the wave proceeds from one surface to the
next in time & while the phase at any fixed position changes at the rate
w, this phase difference must be wét. Finally if 8s, is the distance between
the surfaces at (z,y,%) and v is the wave velocity at that point, we have

L = w it = w (6)
c v
However, we must also have
oL = |VL| 8s.. 7
1t follows that
IVL| =2 = n, ®)

where 7 is the index of refraction—in general a function of position in the
medium. The function L must therefore satisfy the differential equation

aL\? aL\? aL\?
wie = (5) + (&) + () == ©

4.3, Curvature of the Rays in an Inhomogeneous Medium.—In a
homogeneous medium the rays are straight lines; in an inhomogeneous
medium they have a curvature that we shall now compute. Let s be a
unit vector in the direction of the ray at a chosen point. This is normal
to the wavefront and must have the direction of VI; so by Eq. (8) we
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have then
s = YL

" (10)

Let N be a unit vector in the direction of the radius of curvature of the
ray at the same point and p the radius of curvature; the vector curvature
of the ray is then N/p. This curvature, however, is also given by ds/ds,
where s is distance measured along the ray. By the vector identity

ds

i (s V)s = —sx (V x8) (11)
we have then
N
5 = —s x (V xs). 12)

On taking the scalar product with N, Eq. (12) becomes

= -N-(sxVxs)=—(Nxs)(Vxs) (13)

|-

. 1
Using Eq. (10) to compute V x s, and replacing V(,}) by —(1/n)¥(In n)
we obtain finally
1o N:v(nn). (14)

p

Since the radius of curvature is an essentially positive quantity, it
follows from Eq. (14) that the rate of change of the refractive index in
the direction of the radius of curvature is positive; that is, the ray bends
toward the region of higher index of refraction. In a homogeneous
medium where 7 is independent of position, the right-hand side of Eq.
(14) is zero, the radius of curvature is infinite, and the rays are straight
lines. From Eq. (12) it follows also that in a homogeneous medium the
vector field of the rays satisfies the condition

Vxs =0 (15)

This is a sufficient condition for the existence of a family of surfaces
orthogonal to the field of vectors s.

4.4, Energy Flow in Geometrical Optics.—Consideration of the rays
leads to a simple hydrodynamic picture of the energy flow. It was
pointed out previously that the rays are lines of flow of energy. Let us
consider the two wave surfaces L, and L, of Fig. 4-3 and a tube of rays
that cuts out elements dA, and dA , on the respective surfaces. No power
will flow across the sides of the tube; the flow across any scction normal to
the tubes will be constant. If S is the rate of flow per unit area, the con-
dition of constant power flow through the tube is

S1dA; = S:dA,. (16)
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In the case of electromagnetic waves the quantity S is the magnitude of
the Poynting vector; we shall assume that as in the case of plane and

cylindrical waves (Sec. 3:7)
1/e\?
S = 5 (;) |E]2. 17

If the permeability u is independent of position, the relation between the
electric amplitudes at d4; and d4. is

e B2 dA = 'Kl dAs. (18)
In terms of the refractive index n = (e¢/e0)?* we have

n1]E1[2dA1 n2‘E2|2 dAtz (19)

Unlike the Huygens-Fresnel principle, geometrical optics sets up a one-
to-one correspondence between the amplitude at one field point and the
amplitude at another.
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Fie. 4-3.—Energy relations in geometric optics: (@) tube of rays in an inhomogeneous
medium; (b) relations between wavefronts in a homogeneous medium.

It will be of interest to apply Eq. (19) to the case of a homogeneous
medium in which the rays consist of straight lines. The segments of
rays between the wavefronts L; and Lg, as shown in Fig. 4-3b, will have
equal lengths p. Let the ray through the point 4 on surface L; be the
z-axis, and let the xz- and yz-planes coincide with the principal planes
of Lyat A. A ray through an adjacent point B lying in L, and the zz-plane
will intersect the ray through A at the point O,, at a distance £, which is
one of the principal radii of curvature of L, at point 4; a ray through an
adjacent point C in the yz-plane will similarly intersect the ray through
A at the point O,, at a distance R, which is the second principal radius
of curvature of L, at A. The radii of curvature will be considered to be
positive if the centers of curvature lie on the negative z-axis, as shown.
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The point A’ on the surface Ly lies on the ray through A. It can be
shown that the principal planes of Ls at A’ are coincident with those of
Ly; through A" we can pass coordinate axes z’, ¥’ which correspond to the
axes of x, y, respectively. It is obvious that the principal radii of
curvature of the surface L; at the point A’ are B, + p and R + p.

Let us now consider an element of area d4, which includes A and is
bounded by the curve I'. The rays through the curve intersect L, in
the curve I, which bounds an element of area dA» around the point A’
These areas are given by

dds = f, @dy - ydu),
dA, = fr' (z" dy’ — y' dx").

It is evident from the figure that the coordinates of corresponding points
(z,y) and (z',y’), near A and A’ respectively, are thus related:

2+ p

(20)

=R z (21a)
, _ R+ p
=, (210)

Substitution of these relations into Eq. (20) gives the relation between
the cross sections of the tube of rays at L, and Lg:

i, = BT R R‘l@j—@l dd.,.

e (22)

Inserting this result into Eq. (19) and recalling that in the present case
n, = ns, we obtain the relation

\ R\Rs te
E) o= g | Avdie YR
Edl = B, (1&131 + p)(R: + P)) 23)
When R: and R; are both finite and the surface L. is so far from L, that
p > R, and R,, this reduces to

~ 0l
P

This last relation will be of use to us in the discussion of scattering of
radiation by curved surfaces.

4-5. Geometrical Optics as a Zero-wavelength Limit.—We shall now
investigate the relation between geometrical optics and the field equa-
tions,! taking up in the succeeding section its connection with the

|E 4} {R\Ry) . (24)

1 The subject is treated from the point of view of the sealar wave equation by P.
Debye, Polar Molecules, Chap. 8, reprint by Dover Publications, New York, 1945;
also in the article by A. Sommerfeld in Ph. Frank and V. Mises, Differentialgleichungen
der Physik, Chap. 20, reprint by Mary Roseuberg, New York, 1043.
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Huygens-Fresnel principle; the analysis will be confined to homogeneous
media.

A careful review of the ideas of the preceding sections will make it
evident that geometrical optics is based on the idea that a wavefront
behaves locally like a plane wave. The corresponding solution to the
scalar wave equation is

U = Ary, el (25)

where ko = 27/\, A(z,y,2) is the amplitude of the wave (usually a func-
tion of position} and L(z,y,z) is the characteristic function defining sur-
faces of equal phase. We are here concerned with a linearly polarized
electromagnetic field and must consider the vector counterparts of this
solution. Let us then investigate the possibility of satisfying the field
equations by electric- and magetic-field vectors having the form
E = a(z,y2)etolzun, (26a)
H = g(z,y,z)e kol =w.2), (26b)
The amplitude vectcrs e and § may be complex, but their phases in that
case must be independent of position.
On substituting these expressions into the homogeneous forms of the
field equations [Eqgs. (3-32)], it will be found that the amplitude and
phase functions must satisfy the relations

8 % (VL x @) — Ji—“ (¥ x o), (27a)

i

14

— % (VL x 8) + Jle (V x8). (27b)

On eliminating 8 from Iiq. (27b) by means of Eq. (27a) and replacing
ko by w(uoeo)*? 1t will be found that « must satisfy the equation

1 oy 1
€= — [VL(a - VL) — «|VL|?] —{—m [VL x (V % @)
+ ¥ (VL x ] + s [V x (Vx5 (28)
0

n is again the index of refraction. Similarly, on eliminating e from Eq.
(27a) we find that 8§ must also satisfy Eq. (28).

If VL and the derivatives of a and 8 are finite, the last two terms on
the right are of the orders 1/ky and 1/k3, respectively, as compared with
the first. As \ goes to zero, ko approaches infinity and the last two terms
approach zero. For Eq. (28) and the analogous equation in 8 to be
satisfied under these conditions we must have

«- VL =0, (294)

8.VL =0, (29b)
VL2 = n2, (29¢)



116 WAVEFRONTS AND RAYS [Src. 4.6

The last of these conditions is the differential equation for the charac-
teristic function that was developed in Sec. 4-2. The first two conditions
state that « and 3 must be transverse to VL; it follows that « and @ lie
in a plane transverse to the direction of propagation. Furthermore,
Eq. (27a) can be written as

- () (Fxe) g () e o

the second term being of order 1/ky compared with the first. In the
limit A — 0 the second term vanishes. Since VL/n is a unit vector in
the direction of propagation, we see that in the limit X — 0, 3 must be
perpendicular to « as well as to the direction of propagation. It follows
that the Poynting vector is normal to the wavefront and that its magni-

tude is ’
51 = (£) et @

to terms of the order of 1/k,.

We have thus seen that the field vectors of geometrical optics [Egs.
(26)] possess the properties which were shown in Sec. 3-11 to be possessed
by the far-zone fields. In this region, at least, we may expect geometrical
optics to serve as a reasonable approximation to the exact theory.

It should be emphasized that the terms of order 1/ks and 1/k2 in
Egs. (28) and (30) may be considered negligible for short wavelengths
only if the derivatives entering into these terms are finite. In the
neighborhood of a geometrical focal point the function L varies rapidly
and its derivatives assume large values; at the boundary of a geometrical
shadow the amplitude varies rapidly. In these regions the geometrical-
optics approximation fails, and phenomena are observed that are not
covered by the simple theory of wavefronts and rays.

4-6. The Huygens-Fresnel Principle and Geometrical Optics: The
Far-zone Approximation.—It will be instructive to investigate the rela-
tion between the Huygens-Fresnel principle and geometrical optics to
see under what conditions the point-to-point amplitude relation [Eq. (23)]
that was obtained in Sec. 4-4 on the basis of the geometrical-optics con-
cept of the flow of energy in tubes of rays can be derived from the
Huygens-Fresnel principle in the limit of zero wavelength. The discus-
sion will be restricted again to homogeneous media.

For our present purposes it is sufficient to consider any one scalar
component of a field vector; we therefore take as our starting point the
scalar integral formula [Eq. (5)]:

up = — 417_ e [u (jk + }_) cos (n,r) + Z—Z] ds, (4-5)

s T



Sec. 4-6] FAR-ZONE APPROXIMATION 117

where the surface S encloses all the sources of the field. In view of the
results obtained in the previous section we confine our attention to
the field far from the sources; the present section is directed toward ihe
development of an approximation to Eq. (5) suitable for equiphase sur-
faces in this region.

In the far zone the field is a quasi-point-source field (Sec. 3-11); that
is, the amplitude function takes the form

wu=""F0¢ +0 (l) (32)
e ’ 0t/

where p, 8, ¢ are the spherical coordinates of a point in the far zone with
respect to an arbitrary origin in the neighborhood of the sources. If n
is the unit normal to 8 directed out from the region containing the sources
(Fig. 4'1) and ¢y, 01, ¢; are unit vectors in the directions of increasing p,
6 and ¢, respectively, at a point on 8, the normal derivative of u on this
surface is

ou ou 1du 1 odu
57_2_n Vu =n- (ap 91+P¢900 +psin(§6_¢¢l>. 33

By use of Eq. (32) we obtain
, u 1 BF 1 oF 1
Vu = —jkugy + - ( o1 + F oo L e %%) +0 (;2) (34)

In the far zone p 3> \; consequently

Vu =~ —jkup, (35)
and

ou .

in "~ —Jjku cos (n,01), (36)

providing also that the variation of the amplitude in the ¢ and ¢ direc-
tions is small compared to that in the radial direction. The integral
relation thus becomes
1 et | . U
up = — | —- {jkufcos (n,01) — cos (n,r)] — - "cos (n,r) ; dS. (37)
dr fs T r
Finally, if we consider only field points P such that r 3> M for all points
on S, the last term in the integrand is negligible with respect to the first.
We then have, as an approximation valid in the far zone,

Uur u[cos (n,01) — cos (n,r)] & dS >\ (38)

2)\

In the limit A — 0 this equation can be applied with virtually no restric-
tion as to the location of the field point P.
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Equation (38) applies to any surface in the far-zone region that
encloses the sources of the field. Let us now consider the surface S to
be an equiphase surface and assume on the basis of the preceding section
that the field can be expressed in the form of Eq. (25),

u = A(z,y,z)e Lz, (4-25)

It was seen that in the limit A — O this leads to a solution of the field
equations such that the Poynting vector is normal to the equiphase sur-
face. On the other hand, in the investigation of the far-zone fields in
Sec. 311 it was found that neglecting terms of order 1/p® the Poynting
vector is in the direction of o, independent of the choice of the origin in
the neighborhood of the sources. Consequently, if § is an equiphase sur-
face, we have as an approximation valid for short wavelengths

cos (n,e1) ~ 1. (39)
The integral relation [Eq. (38)] in this case reduces to

j o—1kr

ur = o Su[l — cos (n,r)] - ds. (40)
It will be recognized that Eq. (39) is tantamount to assuming that the
equiphase surfaces do not differ widely from spheres about the source
distribution. Also in view of the condition associated with Eq. (35)
that p > A, the assumption is implied that the radii of curvature of the
equiphase surfaces are large compared with the wavelength.

A consideration of the normal derivative du/dn in terms of field
expression of Eq. (25) shows an additional assumption, concerning the
amplitude A (z,y,z), which underlies the use of the far-zone integral [Eq.
(40)]. Taking Eq. (25), we have for the normal derivative of u on an
equiphase surface

ou . 1 84

In obtaining this result use is made of Eq. (29¢). Substituting Eq. (41)
into Eq. (5) shows that we pass from the latter to Eq. (40) under the
condition that

194 27 \

A an < ~ (42)
This is satisfied, of course, in the limit X\ — 0 provided that (1/4)(0A/dn)
is finite everywhere. In the practical case, where the wavelength is
small but not equal to zero, the contribution of (1/4)(84/dn) can be
neglected to a good approximation if the fractional change in amplitude
over a distance equal to the wavelength is small compared with unity.
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4.7, The Principle of Stationary Phase.—FEquation (40) still expresses
the field at point P as a superposition of spherical wavelets arising from
every point on the equiphase surface. The transition to the geometrical
optics result of Sec. 4-4 is carried through on the basis of the principle of
stationary phase which we shall discuss in this section.

Let the surface S of Fig. 4-4 be the equiphase surface and P be the
field point. There are at least two points on S at which the normal to
the surface lies along the line passing through P. Let N be the nearest
of such points to the latter, and let NP be the z-axis of our coordinate
system; the z- and y-axes are taken in the principal planes of curvature

P(o,0,p)

I'16. 4-4.—On the principle of stationary phase.

of the surface at the point V. The surface is divided into segments S,
and S; by the curve I' along which the tangent planes to the surface are
parallel to the z-axis. We shall assume that in each segment there is only
one point at which the line of the normal passes through P. This condi-
tion implies that P is not a focal point of the rays associated with the
surface 8.

Denoting the distance NP by p, the integral of Eq. (40) can be
rewritten as

ur = oo [ / ull = eos O} o gr gy, (43)
S14+ 82

7 COS (n,z)

The integral is a sum of vector elements and can be treated graphiecally
by the customary procedures of vector addition. The magnitude of the
vector element contributed by an arbitrary element of surface dS is
(u/r)[1 — cos (n,r)] dS, and the angle between it and the vector from the
element of area at the point ¥ is (2r/N\)(r — p). Consider now the con-
tribution from an arbitrary portion of the surface as a function of the
wavelength. If the wavelength is large, the angle between vectors
from adjacent surface elements is small; the vector diagram in this case
takes the form of a gradual curve, as is illustrated in Fig. 4-5a, and we
may in general expect a resultant vector ux significantly different from
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zero. On the other hand, if the wavelength is small, the angle between
adjacent elements is large and the vector diagram takes the form of a
tightly wound eurve as is shown in Fig. 4-5b. In the latter case the result-
ant vector ug may in general be expected to be virtually zero, the more
so as A — 0. Thus, as a result of the rapid variation in the phase of the

integrand of Kq. (43), we have de-

structive interference and virtually

U complete cancellation between the
Up spherical wavelets from an arbitrary
portion of the phase surface.
(@) )

T . . .. ’
Fic. 4-5.—The vector representation he situation I_S dlﬁ‘erent’ how
of the Huygens-Fresnel integral: {a) the ever, for those portions of the surface
long-wavelength case; (b) the short- jn the neighborhood of the point N
wavelength case,

on the segment S, and the correspond-
ing point on Ss.. It is observed that the phase function

play) =r—p=+y+@-aPi—p (44)
is stationary in the neighborhood of these points; at these points
do _ 99 _
B "oy =0 (45)

Consequently, in the neighborhood of these points the phase varies
slowly, despite the short wavelength, and the vector diagrams represent-
ing the contributions of the areas around these points take the form of
Fig. 4-5a rather than that of Fig. 4-5b. The stationary phase areas yield
contributions to the integral [Eq. (43)] compared with which the con-
tributions of other portions of the surface are negligible. We are thus
led to the principle of stationary phase: For short wavelengths, the
integral of Eq. (43) representing the effect of the whole surface S is
negligibly different from the sum of the contributions of the areas about
those points on 8 at which the phase has a stationary value.

It will be observed further that at the stationary point on the seg-
ment Ss, cos (1,r) = 1 and that the cos (n,r) will not be very different
from unity over the area in the neighborhood of the stationary point in
view of our earlier assumptions (Sec. 4:6) as to the nature of the surface.
The contribution from this area is again zero, since 1 — cos (n,r) vanishes,
and we are left then solely with the contribution of the area around the
point N. The amplitude of the integrand of Eq. (43) may be considered
constant—equal to its value at the point N— over this area, and Eq. (43)
then reduces to

J e ikp / / kédr d (46)
Up =~ U, e dr ay, i
P > N P 5 Yy

where 84 is a small area around the point N.
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The equation of the surface in the neighborhood of N is

L = (le+ )+ 1)

R, and R, being the principal radii of curvature. Inserting this into Eq.
(44), we find that to second-order terms the phase function over the

area dy is
_1{Ri+p Rz+p)
-Q( Rm) +2(RP v (48)

this is to be inserted into Eq. (46). We may now, however, reverse the
application of the stationary phase principle and argue that the integral
of Eq. (46) may be extended over the infinite (z,y)-domain with negligible
error. We thus obtain

y — 1k @ - 'fuzz 2
up ~ Juy i f/ e T gy dy, (49)
A P -
with
_ (B + P). _ <1_32 + P)_
a = ( Rlp ] ﬁ Rzp (50)

The integral of Eq. (49) can be transformed to Fresnel integrals,

with the final result!

1 The argument may be applied in general to integrals
- / ﬁz F(u,p)e-*m dy dy

over a region R in which F(u,v) has bounded variation in each variable. i (uo,0) is
a stationary point of the function ¢ in the region R, and if the coefficients « and 8
of the canonical form of d?¢ at that point,

d*¢ = i(at® + %),

are both different from zero, the asymptotic value of the integral for large & is

-] ©
k
— i~ (a 2
u = F(uo,v)e Fu0.v0) / /e .12( E’+ﬂv:)dE dn;
L]

- —-—w

or,

u F (uo,00)e~ 1 o00) ¢ 4(Ia| IB[)

kl ﬁl’ﬁ
If ¢ has more than one stationary point in the region, the total value of the integral is
obtained by summing the latter expression over the stationary points.

The prin..ple was formulated by Lord Kelvin, Math. Phys. Papers IV, 303-306
(1910), for one-dimensional integrals; the latter has been discussed recently in a
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—u R.R, 4
TR+ p) (B + p)

The amplitude relation is seen to be identical with that obtained on
the energy flow basis. The factor e¢*» simply represents the phase
change corresponding to the displacement of the wavefront S along the
optical rays to the wavefront containing the point P.

4-8. Fermat's Principle.—We shall now return to the discussion of the
methods of geometrical optics and shall consider several principles that
underlie the design of reflectors and lenses. The first of these is Fermat’s
principle, which is often taken as the basic postulate in the development
of the general theory.!

Before stating Fermat’s principle we must introduce the idea of
“optical path length.” The optical path length AL along a eurve T'
between points P, and P; is defined by a line integral along this curve:

u b, (51)

AL = / nlds], (62)
r

where n is the refractive index at the line element ds.

This concept is intimately connected with the ideas discussed in
Sec. 4-2. Between two adjacent phase surfaces L(z,y,z) = L, and
L(z,y,2) = Lo + 3L, there is an increment in the value of the character-
istic function L which is, by Eq. (6),

-8L = - 884 = N O8n. (53)

SN

The distance és. between the two surfaces is a function of position, but
the quantity éL = n és.is a constant; this, it will be noted, is the optical
path length along any ray between the two surfaces. It follows imme-
diately that the optical path length, as given by Eq. (51), is the same for
every ray between any two wavefronts L(z,y,2) = Lo and L(z,y,2) = Li;
it is, in fact,

AL = |Ly — L. (54)

Thus the characteristic function L{z,y,2) can be interpreted as the optical
path length along a ray from the wavefront L(x,y,z2) = 0 to the wave-
front in which the point (z,y,2) lies.

rigorous manner by A. Wintner, J. Math. Phys., 24, 127 (1945). As yet, rigorous
extension to the two-dimensional case has not been made. The convergence of the
integrals that is required for the process outlined here to be valid is assured in the
case that a and 8 are both positive and k& has a small negative imaginary com-
ponent £;; the final result is then to be interpreted as the limit (after integration) as
ki — 0.

1 Cf. J. L. Synge, Geometrical Optics, Cambridge, London, 1937.
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The idea of optical path length is not restricted in its application to
rays. One can determine the optical path length between two points
P, and P: along any curve I whatever; its value will in general vary with
the choice of I. Fermat’s principle provides a method for using these
values in selecting possible ray paths from P; to P, from all other paths.
It may be stated thus:

Fermat’s principle: The optical ray or rays from a source at a point
P to a point of observation P, is the curve along which the optical path length
18 stationary with respect to infinitesimal variations in path.

Usually the optical path along a ray has a maximum or minimum
value with respect to neighboring paths. The inclusion of the plural
possibility “rays’ in the above formulation of Fermat’s principle is

(@) ()]

F1c. 4-6.—Notation for the derivation of S8nell’s laws: (¢) reflection; (b) refraction.

required to cover situations in which the point P, may be reached by
rays from P, by a direct path or by reflection from surfaces at which
there are discontinuities in the index of refraction.

It follows directly from Fermat’s principle that in a homogeneous
medium (n = constant) the rays are straight lines. The optical path
length is in this case proportional to the geometrical path length, and a
straight line gives a minimum value for both.

Fermat’s principle can also be used in deriving Snell’s laws of reflec-
tion and refraction at the interface between two homogeneous media.
Let us constder first the laws of reflection. Let the point O of Fig. 4-6a
be the point on the reflecting surface M for which the optical path length
from P; to O to P, has a stationary value. The optical path must con-
sist of straight line segments from P; to O and O to P,, since these paths
are in a homogeneous medium. The optical path length is then certainly
stationary with respect to neighboring curved paths from P, to P; by
-way of M which leave the point O unchanged; but by dur postulate it is
stationary also with respect to straight-line paths with near-by reflection
points O’. Let us then consider a neighboring point 0’, displaced with
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respect to O by = 8l, = being a unit vector in the tangent plane. We shall
now compute the variation in optical path length as O’ is changed.
Let s; and s, (Fig. 4'6) be unit vectors in the direction P;0 and OP,,
respectively, and m the unit vector normal to the surface at 0. Then we
may write the vector P as p;8; and the vector OP; as pSe.  Similarly
let s; 4+ 8s; and s, + &s: be unit vectors along the lines P10’ and O'P,,
respectively, and p; + dp: and ps + 8p2 the lengths of these lines. The
variation in optical path by way of O’ with respect to the path by way
of the point O is

8L = n(8p, + dp2); (65)

by our postulate this must vanish to terms of the first order in 8. From
Fig. 4:6 it is clear that

(p1 + 8p1)(s1 + 8s1) = pi1S1 + < &l (56a)
(pz + sz)(s-z + 552) = peSg — = 4l. (56b)

To terms of the first order we have then
5p1St + p1 881 = < 8l (57a)
dpeSz + p2 88 = —< 8, (570)

whence

8py = 81+ % 5l, (58{1)
dpg = —Sy- < él, (58b)

since 8; - 8s; = 0. By Fermat’s principle, then,
3L = n(s, —s2) =8l =0 (59)
for all variations &l; hence
(s1—82)-c=0 (60)

for every unit vector « in the tangent plane. This gives immediately
the two laws of reflection:

1. The incident ray, the reflected ray, and the normal to the reflecting
surface all lie in the same plane. (The plane defined by s, and
sy is normal to the tangent plane.)

2. The incident and reflected rays make equal angles with the normal.
[cos (Siy®) = cos (Se,%); that is, the angles (si,x) and (Sg,t) are
equal.]

The law of refraction is derived in a similar manner in Fig. 4-6b. The
variations in actual length of the paths P10’ and O'P, are given again by
Eqgs. (58); the optical path variation is, however,

oL = n; 8p1 + N2 py = (n151 —_ nzsz)' % 8l (61)
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By Fermat’s principle this again vanishes for every &l, whence
(77451 e nzsz) e =10 (62)

for every vector ¢ in the tangent plane. This implies the two laws of
refraction:

1. The incident ray, reflected ray, and the normal lie in a plane.

2. n; cos (S1,7) = N2 cos (Sa,1), (63a)
or in terms of the angles between the rays and the normal

n, sin (m,s;) = 72 sin (m,s,). (63b)

Snell’s laws of reflection and refraction are again an expression of the
fundamental assumption of geometrical optics that the wavefront
behaves locally like a plane wave; in addition, they assume that the
boundary surface can be treated locally like its tangent plane. In field
theory Snell’s laws derive rigorously from application.of the boundary
conditions of Sec. 3-3 only for the case of an infinite plane wave incident
upon an infinite plane boundary.! They follow in a good approximation
from these boundary relations if the radii of curvature of the two wave-
fronts (incident and reflected or refracted) and of the boundary are large
compared with the wavelength,

4.9, The Law of the Optical Path.—Fermat’s principle provides an
independent formulation of optical rays from the method of the charac-
teristic function L(z,y,z) and equiphase surfaces developed in Sec. 4-2.
It was shown in the latter section that the rays are orthogonal to the
equiphase surfaces, and it was observed further in the preceding section
that the optical path along the rays between a pair of equiphase surfaces
is a constant. The treatment of Sec. 4-2 applies, however, only to
media in which the index of refraction is a continuous function of
position. We shall now show that the system of rays arising by refrac-
tion or reflection (in accordance with Snell’s laws) at a boundary of
discontinuity in the refractive index have associated with them a family
of equiphase surfaces, so that the law of constant optical path holds for
any pair of wavefronts, one a member of the incident system and one
of the refracted (reflected) system.

It was seen that in a homogeneous medium the rays are straight lines.
A family of straight lines for which there exists a family of orthogonal
surfaces is said to constitute a normal congruence. Thus, the rays
defined in Sec. 4:2—the normals to the surfaces L(z,y,z) = constant—
constitute a normal congruence. Iet us now consider the problem of
refraction or reflection, it being given that the incident system of rays
form a normal congruence associated with a family of equiphase surfaces

1 See M. Born, Oplik, p. 15, reprint by Edwards Bros., Ann Arbor, Mich., 1943.
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L(zx,y,z) = constant. The first question is whether the refracted (or
reflected) system of rays is likewise a normal congruence. This is
answered in the affirmative by the theorem of Malus which we state with-
out proof:!

Theorem of Malus: A normal congruence after any number of reflections
and refractions is again a normal congruence. The system of refracted
rays thus has associated therewith a family of orthogonal surfaces.

We shall now investigate the optical path along the rays between a
member of the incident wavefronts and a member of the surfaces ortho-
gonal to the refracted system of rays. let L; of Fig. 4-7 be a wavefront

Ly

L,
F16. 4:7.—On the law of the optical path.

in the incident system and L; one of the orthogonal surfaces of the
refracted system of rays and consider an incident tube of rays passing
through the closed curve I'y on L,; let T',, be the curve of intersection
of the tube with the refracting surface M and T, the curve of intersection
of the refracted tube of rays with the surface L,.

We shall evaluate the optical path from L, to L. along any pair of
rays, say the paths ABC and 4’'B’C’ shown in Fig. 4-7. Let us consider
first the integrals

B B’ A’
¢ nisy - dl = / N8 * dl + / niSy * dl + / 7181 * dl
(D A B B

(L'm)
4

+ /A' S, * dl, (64)
(I'v)

! See for example R. K. Luneberg, Mathematical Theory of Optics, Lectures in
Applied Mathematies, Brown University, 1944.
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and

(o} c B’
¢ NgSg * dl = / 7389 * dl + / N9Sy * dl + / T28g * dl
o B c c

(T2)

B
+ /B' MN9Sq * dl, (65)

(I'm)

where s; and s, are unit vectors along the inc'dent and refracted rays,
respectively. Since s; and s, are both normal congruences, they each
satisfy the equation [see Eq. (15)]

Vxs=0;

therefore, the line integrals around the closed paths ﬁ(l) and f(u) are

zero. Furthermore the integrals over I'; and T'; are zero, since s; and
s; are normal to these respective curves. Adding the above integrals
(I) and (II) and transposing suitable terms, we then obtain

B (o} B’ c’
/ 18, " dl + / N9Sg * dl = '/. 18, * dl + / 9Sg * dl
A B A’ J B’
B

+ /B, (n18; — Mase) - dl.  (66)

{m)
The last integral of Eq. (66) vanishes as a result of Snell’s law of
refraction. The left-hand side is the optical path ABC, while the first
two integrals on the right-hand side constitute the optical path A’B’C’.

We have, therefore,
/ nds = / n ds. (67)
ABC A'BC

The optical path and hence the phase increment are constant along all
rays from the equiphase surface L, in the incident system to the surface
L. in the refracted region. The family of surfaces orthogonal to the
refracted rays thus constitutes the refracted system of equiphase surfaces.

The law of the optical path often provides a simpler approach to
the determination of reflecting or refracting surfaces than do Snell’s
laws. Asan example, let us design a reflector that transforms a spherical
wave into a plane wave. It is evident that the surface is a surface of
revolution and that it is sufficient to consider a plane section containing
the axis of revolution. In Fig. 48 let F' be a point source, the center of
curvature of the spherical wave; M the reflecting surface; and Lo any one
of the family of plane wavefronts into which the spherical waves are to
be transformed. The optical path from F to the wavefront L, is

FP + AP = const. = f + d. (68)
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The constant may be evaluated by considering the path along the axis;
if the distance OF = f, the optical path is equal to f + d. When FP
and AP are evaluated in terms of p and ¢, Eq. (68) becomes the equation

x
P A
P
o %\F -z
d
LO

F16. 4-8.—Application of the law of the optical path.

of the surface in polar form

- 2f
T 14 cosy

This is the equation of a parabola of focal length f.

In contrast to the above calculation, application of Snell’s laws would
lead to the setting up of the differential equation of the surface; it would
then be necessary to integrate this equation. Further examples of the
application of the law of the optical path will be discussed in later chap-
ters in the design of mirrors and lenses.

P (69)




CHAPTER 5
SCATTERING AND DIFFRACTION

By 8. Sitver

The introduction of an obstacle into the path of a wave gives rise to
phenomena that are not covered by the geometrical theory of wave-
fronts and rays developed in the preceding chapter. These phenomena
—scattering and diffraction—are of fundamental importance in micro-
wave antennas, for they underlie the formation of antenna patterns by
reflectors and lenses. In the present chapter the theory of scattering
and diffraction is developed with reference to general techniques; the
specific problems associated with antenna patterns will be taken up in
Chap. 6.

6-1. General Considerations.—The discussion of the scattering
problem will be restricted to the case of an obstacle of infinite condue-
tivity. The problem with which we are concerned is the following:
Given a primary system of sources that produces an electromagnetic
field Eo, Ho; an infinitely conducting body is introduced into the field,
and it is required to find the new field E, H.

In practice the primary sources are distributions of currents and
charges over a system of conductors activated by generators. We shall
refer to the latter system of conductors and generators as the source
system, in distinction to the currents and charges over the obstacles.

The solution to our problem is based on the superposition principle
of Sec. 3-2. On introducing the body into the field of the sources a dis-
tribution of current and charge is induced over its surface. We then
have two component fields: one arising from the induced distribution
over the body and the second arising from the currents and charges in
the source system. The total field E, H results from the superposition
of the component fields. It should be noted, however, that the field of
the body reacts on the source system with a resulting perturbation of its
current distribution, so that the component field of the latter differs
from the original field Eq, Ho.

The interaction between the body and the source system—and the
total field E, H—can be analyzed as a superposition of multiple scattering
processes. First we consider the interaction of the body with the original
field Eo, H,, assuming no change in the source currents. The body sets
up a scattered wave E;, H;, arising from an induced distribution over its
surface. The scattered wave falling on the source-system conductors

129
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induces a current distribution in the latter that gives rise to a secondary
scattered wave Eg, H;. The interaction of the secondary wave with the
body is again a scattering process leading to an induced distribution over
the body and a scattered wave E’/, H'/, and so on. The total induced
distribution over the body is the sum of the distributions associated with
the component scattered waves E,, E”/, . . . , and the resultant distribu-
tion in the source system is the sum of the distributions associated with
E, Ej, . . . , respectively.

If the distance R between the source system and the body is large
compared with the dimensions of either, the scattering processes of order
higher than the first can generally be neglected; for
example, in general the ratio E;/E, evaluated at the
body is of order 1/R? and the ratio E{/E, is of the
order 1/R* Also, in special cases, where, although
the distance R is not large, the geometry of the body
is such that the amplitude of the scatterea wave E,,
H, at the source system is small, multiple scattering
may be neglected in the analysis of the total field E, H.
These conditions are usually met in microwave antennas, and the multiple
scattering will be neglected in the study of the antenna pattern.

6.2. Boundary Conditions.—With attention restricted to a single
scattering process, our problem is that of finding the scattered field E,,
H, set up by an infinitely conducting body when it is introduced into an
initial field Eo, Ho; the total field is then

E=E +E, (la)
H =H, + H. (1b)

It is assumed that the initial field is prescribed for all space.

Let V in Fig. 5-1 be the region occupied by the body; n is a unit vector
normal to the boundary surface S of V, directed outward into the sur-
rounding space. Since the conductivity of the body is infinite, the total
field E, H is zero everywhere inside the region V; according to the bound-
ary conditions of Sec. 3-3 there is a distribution of charge and current
over the surface S:

n
F1g. 5-1

7 = e(n- E), (2a}

K =n xH, (2h)

respectively. E and H are the total fields just outside V, and € and p

are the constitutive parameters of the surrounding medium at the bound-

ary surface. These charge and current distributions are the sources
of the scattered wave E,, H,.

From Egs. (1) it is seen immediately that at all points in the interior

of the body the scattered wave is out of phase with the original field:

E1 = '—Eu, H] = "‘HO) (3)
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since the total field is zero. Accordingly we need concern ourselves only
with the region exterior to V. Here the scattered field must be deter-
mined as a solution of Maxwell’s equations that satisfies appropriate
boundary conditions at infinity and over the surface 8. The boundary
conditions to be imposed at infinity are the radiation conditions [Eqs.
(3-113)], since the field arises from a current distribution confined to a
finite region of space. Over the surface S, the scattered field must be
such that the total field satisfies the boundary conditions [Eqs. (3-24)
and (3-28)]:

nxE=0, (4a)
n-H =0. (4b)

From Egs. (1) we have that the corresponding boundary conditions on
E,and H, are

nxE, = —n x E,, (5a)
n-H, = —n-H, (5b)

Since the field Ey, Hy is known, Eqs. (5) prescribe the tangential compo-
nent of E, and the normal component of H; as known functions over S.

The boundary conditions [Eqgs. (4a) and (4b) or (5)] are not independ-
ent. If the field satisfies Maxwell’s equations and one of the boundary
conditions, 1t necessarily satisfies the other. Let us assume, for example,
that condition (4a) is satisfied by the total field. Applying the integral
relation between the field vectors [Eq. (3:17a)] to any area on S bounded
by an arbitrary curve I', we have

E-ds=— = [ B-ndS =0, (6)
S

since E - ds = 0 by virtue of the boundary condition (4a). The result
holds for an arbitrary area, no matter how small; consequently n - B = 0
over the surface. Therefore only one of the boundary conditions need be
considered in selecting the appropriate solutions of Maxwell’s equations.

The problem can be approached from another point of view. We
shall restrict ourselves at this point to an ' time dependence and to
homogeneous media. It is evident that if the surface distributions
[Egs. (2)] are known, the scattered field is obtained directly by the meth-
ods of Secs. 3-9 and 3-10. It can be verified readily that the surface
distributions [Eqs. (2)], satisfy the equation of continuity [Eq. (3-9)],
over the surface (E, H being required to satisfy Maxwell’s equations);
as a result the field vectors E,, H, can be expressed in terms of the current
distribution alone, as was done in Sec. 3-9. In fact, the appropriate
expressions are obtained from Eqgs. (3:120) and (3-121) by passing from
volume to surface integrals. The scattered wave is then
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E, = — 4j f (K - V)V + kK] - 4, 0
Twe | g T
H=-L1[&xv)Tds ®)
1= . s X r )

where r is the distance from the field point to the element of surface dS.

The fields given by Eqs. (7) and (8) necessarily satisfy Maxwell’s
equations and the radiation conditions at infinity. To determine the
current density K on the boundary surface S we must use condition (5a)
or (5b). Letting n’ denote the unit vector normal to S at the point of
observation, we have

2 xEo =L | o x[K- V)V + kK] T ds. )
4rwe Jg T
The left-hand side is a known function, and Eq. (9) is an integral equa-
tion for the determination of the unknown current distribution K. The
scattering problem is thus transformed to the problem of solving the
integral equation rather than Maxwell’s equations.

It will be observed that the current distribution which satisfies the
integral equation leads through Eq. (7) to an electric field that satisfies
the requisite boundary conditions over S and at infinity. It was pointed
out earlier that the electric and magnetic fields [Egs. (7) and (8)] satisfy
Maxwell’s equations. Solution of the integral equation (9) thus yields
the unique solution of the problem.!

6-3. Reflection by an Infinite Plane Surface : the Principle of Images.
The simplest obstacle problem is that of an infinite plane conductor.
Here the solution ecan be obtained on the basis of geometrical considera-
tions. Two cases will be discussed: (1) the initial field is a plane wave,
and (2) the initial field arises from a dipole source.

Reflection of a Plane Wave.—Although the reflection of a plane wave
by a plane surface has been treated frequently elsewhere, it will be of
interest to treat the problem here in terms of the general ideas set forth
in the preceding section.

Let us consider a plane wave, of the type discussed in Sec. 3-7, travel-
ing in the direction defined by the unit vector se The initial field is
then [Eq. (3-62)]

E; = Eeitwt—kson, (10)

An infinite plane conducting sheet is now introduced into the field. For
convenience the conductor will be taken to lie in the xy-plane (Fig. 5-2).
The unit vector n, normal to the sheet, is taken to be in the positive

1 For a discussion of the uniqueness theorem see J Stratton, Electromagnetic
Theory, McGraw-Hill, New York, 1941, Chap. 9, Sec. 2.
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z-direction, and the angle of incidence, which is the acute angle between
the lines of direction of s¢ and n, is designated as 6.

The field set up by the current and charge distribution over the sur.
face of the conductor must be such as to produce zero resultant field in
the negative z-region. The scattered field in this region is therefore &

AG

Fr1c. 5:2.—Reflection of a plane wave.

plane wave traveling in the same direction as E; but 180° out of phase
with it; denoting the former by E,, we have then

E, — —Eeitwt—kson), . (11)

It is evident, however, that the infinite plane current sheet sets up in
the positive z-region a field that is the mirror image of that in the nega-
tive z-region. Hence the scattered field in the region of interest is a
plane wave

E, = Eeitor—kein) (12)

traveling in the direction s, which is the mirror image of sy, with an ampli-
tude E, bearing the following relations to the amplitude of E, and thereby
to the incident wave amplitude Eq: (1) Their magnitudes are equal,

B[ = [Eol; (13)
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(2) their respective components parallel to the zy-plane are equal in
magnitude and direction

nxE =nx(—E) = —n xEy; (14)

(3) their components normal to the zy-plane are equal in magnitude but
opposite in direction,

n-E, = —n-(—Eo) = n-E,. (15)

It is seen that as a result of Kq. (14) the boundary conditions [Eqgs. (5)]
are satisfied.

It follows from the image relation between s, and s; that the vectors
So, 0, and s; all lie in the same plane and that

Sp:n = —s;-n, (16)
The relations between these vectors can also be expressed as

s; = 8 — 2(n - so)n, (17a)
So = S1 — 2(n-s)n. (17h)

From the point of view of geometrical optics the unit vectors s, and s,
define the directions of the rays in the waves E; and E,, respectively.
It will be recognized that the relations among s,, n, and s; are just the
laws of reflection derived in Chap. 4. 1t is thus seen that in this case
the scattering reduces to geometrical reflection of the initial wave.

The magnetic-field vectors are obtained from the respective electric-
field vectors by the plane wave relation of Eq. (3-65). Letting H; and
H. be the magnetic vectors of the incident and reflected waves, respec-
tively, we have

H; = <E>1ﬁj (so x E), (18a)
IJ 5

H, = <5> (s: x E)). (18D)
u

The total magnetic field is H = H; + H,, whence by Eq. (2b) the surface
current density on the reflector is

K =n x (H: + H). (19)

Either by symmetry considerations or by direct calculation, it can be
shown that

nxH, =nxH,; (20)

~onsequently, Eq. (19) becomes

4

K=2nxH)=2 (5) [n x (so x E))J, @n



Sec. 53] REFLECTION BY AN INFINITE PLANE SURFACE 135

or, alternatively,

€

¥
K=2nxH,) =2 (#) [n x (s: x E). (22)

In the case of a linearly polarized wave it is convenient for some pur-
poses to express the field amplitudes in another way. Let & be the ampli-
tude of E; in magnitude and phase at any given point on the surface.
The vector amplitude is

E, = Eeq, (23)

where ey is a unit vector that is constant over the reflecting surface.
Similarly the vector amplitude of E, at the same given point on the sur-
face is

E, = gey, (24)
with e; likewise a unit vector. The unit vectors e, and e; are related
by Egs. (14) and (15):

nx(e +e)=0, (25a)
n-e =n-e. (25b)

In terms of these the current density expressions [Egs. (21) and (22)]
become

K

2 (i)z [so(n - €9) — eo(m-s0)] & (26)

and

K

2 (i)z [si(n-e)) — e(n-sp)]§, 27)

respectively.

Dipole Sources.—Let us now consider the case where the initial field
is due to an infinitesimal electric dipole. The infinite plane reflector will
again be taken to be the xy-plane, and the dipole is located on the z-axis
at a distance a from the reflector as shown in Fig. 5-3. The orientation
of the dipole axis with respect to the reflector is arbitrary.

The current on the dipole is, of course, changed by the presence of
the reflector. In this case, however, the reaction of the reflector merely
produces a new dipole moment M ir: the source. This is due to the fact
that the current induced in the source by the reflector is necessarily that
of an infinitesimal dipole of, say, moment M,. The latter is along the
same line as the original dipole moment M, and the superposition of these
two is, therefore, again a simple dipole. The resultant moment of the
source will be designated by M; the field of the dipole is given in Sec.
3-13.

As in the case of the plane wave, the current distribution over the
surface of the conductor must be such that the total field is.zero in the
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hemisphere of space of the negative z-axis. In so far as this region is
concerned, the reflector is, therefore, equivalent to a dipole —M coinci-
dent with the source. By symmetry, however, the reflector produces
a field in the region of the positive z-axis that is the mirror image of its
field in the negative z-region; with respect to the positive z-region the
reflector is equivalent to a dipole located at a distance a on the negative

x

M’ M

—_—

F1a. 5-3.—Dipole images: (1) arbitrary orientation; (#) dipole parallel to the reflector; (c)
dipole normal to the reflector.

z-axis. The sense of the dipole with respect to the source is easily deter-
mined from the requirement that the fields of the image and the source
must combine to give a zero resultant tangential electric field over the
reflector. This leads at once to the result that the image dipole is
obtained by reflection of — M in the plane. The total field in the positive
z-region is that of a double-dipole system made up of the source and the
image dipole; the field is obtained by the methods discussed in Secs.
3-18 and 3-19.

The arbitrarily oriented dipole can always be resolved into a com-
ponent parallel to the plane (Fig. 5-3b) and a component normal to the
plane (Fig. 5-3¢). The images for these two cases with respect to the
source M are an antiphase dipole and a synphase dipole, respectively.
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By considering the fields for these two cases, the reader can verify that
the image sources correspond to geometrical reflection of the spherical
wave from the source by the conducting plane; at each point on the
latter the reflection takes place as though the incident wave were an
infinite plane wave.

The image sources for magnetic dipoles are easily arrived at either
by direct consideration of magnetic dipole fields (Sec. 3:14) or by con-
sidering the image of a small rectangular current loop, which is equivalent
to a magnetic dipole normal to its plane. The image of a current loop
can be obtained by regarding it as an array of electric dipoles. It is
then found that the image of a magnetic dipole is obtained by direct
reflection of the source in the plane: images for dipoles parallel and normal
to the plane are synphase and antiphase, respectively.

The method of images can be applied to any source distribution. If
only the radiation field is desired, the source distribution can be consid-
ered as a system of electric dipoles, the dipole moment distribution being
given in terms of the current density J by

1
dM = = J b, (28)

dv being an element of volume in the source distribution [¢f. Eq. (3-162)]."
Every dipole moment is resolved into a parallel and a normal component
with respect to the reflector, and the total field is the sum of the com-
ponent fields of the dipole elements and their images. With arbitrary
current distributions, however, it must be kept in mind that the reflector
plays an important part in determining the distribution. Only in special
cases, such as a half-wave dipole radiator of negligible thickness, does
the reaction of the reflector produce a change in the magnitude and phase
of the amplitude of the distribution as a whole without affecting the
relative magnitude and phase throughout the entire distribution. The
half-wave dipole can be treated on the same basis as the infinitesimal
dipole, substituting for the field of the latter the field of the half-wave
radiator given in Sec. 3-16.

APPROXIMATE METHODS FOR REFLECTORS OF ARBITRARY SHAPE

Exact solutions of the scattering problem have been obtained for only
a limited number of cases involving simple primary fields and reflectors
of simple geometry, such as spheres and cylinders. These problems are
treated in standard works on electromagnetic theory, to which the reader
is referred for the results.! In treating reflectors of arbitrary shape it is
necessary to resort to approximation techniques. Several such methods,

1 See, for example, J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New
York, 1941, Chap. 9.
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which yield very good results at high frequencies, are discussed in the
following sections.

6-4. The Geometrical-optics Method.—The first method to be con-
sidered belongs more properly to the field of geometrical optics than to
that of electromagnetic theory. It is applicable to the case of a point
source, which has a broad radiation pattern in the absence of a reflector,
together with a defocusing reflector. A reflector of this type renders
every divergent pencil of rays incident on it more divergent on reflection,
as is illustrated below in Fig. 5-4. The scattering pattern of the reflector
is, therefore, very broad, energy being scattered in almost every direction
in space. In such a system the salient features of the total field, such

O (0, 7y sin %, 5 cos )

(o) (0]
F1a. 5:4.—0On the geometrical-optics method.
as the directions of zero and maximum amplitude, arise from the inter-
action between the scattered field and the primary source field. The
finer details of the structure of the scattered field are of secondary interest,
and therefore an analysis of the scattering on the basis of geometrical
opties suffices.

Illustrative of the type of problem to which the method can be applied
successfully is the analysis of the effects of the fuselage or wing structure
of an airplane on the radiation pattern of a microwave beacon antenna
mounted on it. The primary interest is in the lobe structure introduced
into the beacon pattern by interaction with the scattered field from the
aircraft structure, whereas the fine structure of the scattered field arising
from deviations from geometrical optics is of negligible significance.

Let the primary source be located at the point O in Fig. 5-4a. The
assumption that the source is a point radiator is justified in the practical
case of a more general source system if the reflector is in the far-zone
field of the former. It was shown in Sec. 3-11 that in so far as the far-
zone field is concerned any current distribution reduces to a directive
point source, and in Chap. 4 it was found that the far-zone field can ‘e
described adequately in terms of wavefronts and ravs. We shall assume
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further that the wavefronts from the source differ negligibly from spheres
about the point O.

The geometrical-optics analysis of the scattering assumes that at each
point on the reflector the incident ray frorm the source is reflected by the
tangent plane according to the laws of reflection developed in Sec. 4-7.
The intensity of the scattered radiation in a given direction is obtained
by applying the principle of conservation of energy to the total power
contained in an incident cone of rays and the total power contained in
the associated reflected pencil of rays. The use of the laws of reflection
assumes that the reflector can be regarded locally as a plane surface and
the incident wavefront can be regarded locally as a plane wave. It is,
therefore, necessary to require that the radii of curvature of the reflector
and of the incident wavefront be large compared with the wavelength.
The latter condition, however, has already been assured by the fact that
the reflector is in the far-zone field of the sources.

5-6. Calculation of the Scattered Field.—The procedure followed
here! to determine the scattered power in a given direction is to consider
the local transformation from the incident to the reflected wavefront at
every point on the surface of the reflector. This determines the principal
radii of curvature R, and R, of the reflected wavefront, together with the
value of the field amplitude &, at the point of reflection. The magnitude
of the field amplitude &, at a distance p along the reflected ray from a
given point on the reflector is then obtained by means of Eq. (4-23):

— eyl R\R, .
I8l = 18 e £ )

We shall first investigate the amplitude transformation from the inci-
dent to the reflected wavefront. Let us consider an infinitesimal cone
of rays from O incident on the reflector as shown in Fig. 5-4a; the cone
intersects the reflector in an element of surface dS. The cone will be
taken to have a circular cross section; the ray along the axis of symmetry
is referred to as the central or principal ray. The vector n is a unit
vector normal to dS at the point of incidence of the central ray; let 7 be
the angle of incidence between the central ray and the normal. If §;
and &, are the magnitudes at the surface of the reflector of the field ampli-
tudes in the incident and reflected tubes of rays, respectively, and dS;
and dS; are the cross-sectional areas of the respective tubes at the same
point, the relation

(4-23)

82 dS, = 82dS, (29)
expresses the conservation of power in passing from the incident to the

! Alternative techniques have been developed by R. C. Spencer, ‘‘Reflections from
Smooth Curved Surfaces,”” RL Report No. 661, January 1945; C. B. Barker and
H. J. Riblet, *Reflections from Curved Surfaces,” RL Report No, 976, February 1946.
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reflected tubes of rays. From the law of reflection we have that the
angle between the reflected principal ray and the normal is likewise 7, so
that
dS, = dS; = dS cos i, (30)
whence
& = |&]. (31)

The transformation of the polarization on reflection is obtained
directly from the results of the plane wave problem of Sec. 5:3. Let
E. be the incident electric-field vector at the surface and E, the reflected-
field vector; we have then from Egs. (14) and (15)

n x (Er + Et) = 0’ (320')
n-E. =n:E,; (32b)

or,
E.=(@-E)n — (n xE)xn. (32¢)

The determination of the radii of curvature of the reflected wavefront
is a somewhat more difficult task. It will be necessary to make slight
changes in notation: The point of incidence of the central ray on the
reflector, at which the transformation of the wavefront is desired, will
be designated by P, and the unit vector normal to the surface at that point,
by nr; the unit vector normal to the surface at any other point is n
The point P is taken as the origin of the coordinate system (Fig. 5-4b)
with the z-axis along np and the zy-plane tangent to the surface; the
yz-plane is the plane of incidence (containing the central ray and np).
The axes £, n are the lines of intersection of the principal planes of curva-
ture of the surface with zy-plane; the principal radii of curvature of the
reflector at P will be designated by R; and R., respectively. The plane
of incidence makes an angle w with one of the principal planes, say the
plane containing the n-axis. Let ro be the distance OP; the distance from
O to an arbitrary point z, y, z on the reflector is

r=[z24+ y* + 22 + r}3 — 2ro(y sin ¢ + 2 cos 1)]*A. (33)

Consider now the member of the family of reflected wavefronts that
intersects the reflected central ray at a distance p from the reflector.
Let u, v, w be the coordinates of a point on the wavefront, and let z, y, 2
be the coordinates of the point on the reflector for which the reflected
ray passes through a given point (u,»,w) on the wavefront. By the
law of the optical path (Sec. 4-8) the equation of the reflected wavefront
is then

r4+{u—22+@—-9%*+ (w— 22t =71+ p. 34)

Now let so be a unit vector in the direction of an arbitrary incigent
ray and s a unit vector along the associated reflected ray. From the
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law of reflection [Eq. (5-17a)] we have
S1 = So — 2(so* n)n. (35)

If w,»,w are the coordinates of any point on the reflected ray, the unit
vector s, is given in component form by
u—x

E w2 T 0 -9 F (= 27"

with corresponding expressions for sy, si.. Similarly, the components
of s are

(36)

x y — rosin ¢ 2 —rocost
Soz = - Soy = ———; Sgp = —————. 37
0z T, v r ’ z r ( )
Let

z = F(z,y) (38)

denote the equation of the reflector surface. The components of the
normal n at an arbitrary point on the surface are then

10F. __19F,

Nz = A oz’ Ny Z @;

R4

Substitution of Eqgs. (36), (37), and (39) into Eq. (35) gives

y

B

n, =

=z + Gl(x;y) U(u,v,’w; x,y,z),

Yy + Gz(l},y) U\u,v,w; c!ylz)!

z + G3(x7y) U(uyvyw; xryyz)x (40)
U=l=2+ 0 -9+ W= 274

€ =
]

where
19F
Gi(zyy) = f +2(s0-m) 5 5o
Yy —rosing Loy 1oF
Go(z,y) = T T 2(so-m) N (41)
- 1

Go(z,y) = 2 r: cos 1 2(so - 1) L )

and

1 oF . . OF .
so-n—rx[——za—-(y—rosmz)a—y—f-(z—rocosz)]. 42)

Equations (40) give the coordinates of arbitrary points on the system
of reflected rays. If, in particular, we consider the family of points
lying on the reflected wavefront that is defined by Eq. (34), the coordinates
u, v, w of the system of Eqs. (40) must satisfy Eq. (34); in particular
Uuw,w; z,y,2) must satisfy the latter equation. Substitution for U
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into Eq. (40) then leads to

u=2z+ Gi(zy)(ro — 7+ p),
v =y + Guz,y)(ro — 7 + p), (43)
w =2+ Gslz,y)(ro — 7 + D).

The coordinate z is eliminated from these equations by means of the
equation z = F(x,y) for the surface of the reflector. Equations (43)
then become a set of parametric equations (z,y being the parameters)
for the reflected wavefront that intersects the central reflected ray at a
distance p from the reflector. On setting p = 0, we obtain

u =z + Gi(z,y)(ro — 1),
v =1y + G(xy)(ro — 1), (44)
w =2z + Gs(l’?;y)(ro - 7'),

the parametric equations tor a surface that intersects the reflector at the
point P and there represents the reflected wavefront arising from the
segment of the incident wavefront defined by a small cone of rays about
the central ray.

The procedure for finding the principal radii of curvature of a surface
from its parametric equations is straightforward and can be found in any
book on differential geometry;' the details of the calculation will not
be reproduced here. We are interested in the radii of curvature of the
wave surface at the point ©u =v = w =0;1e, 2 =y = 0. In elimi-
nating z from Eqs. (44) it is, therefore, necessary to use only the equation
for the reflector surface in the neighborhood of the point P. Referred
to the principal axes £, 7, the equation of the surface of the reflector is

By a simple transformation, the equation of the surface with respect to
the z, y-axes is then found to be

_ 1 fcos*w | sin®*w) , sin? w | cos? w) .

z“é[( R T Rn>x+(Re t R, )Y

. 1 1
—2smwc08w<m—§n):cy]+ - (46)

radii of curvature R, R, are considered to be positive if the surface is
convex with respect to the positive z-axis.

We are chiefly concerned with the over-all pattern produced by the
reflector and the source system; hence we are interested in the scattered
field at large distances from the reflector. Provided that neither one

! For example, L. P. Eisenhart, 4 Treatise on the Differential Geometry of Curves and
Surfaces, Ginn, Boston, 1909.
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of the radii of curvature R,, R, of the reflected wavefront is infinite, it is
physically possible to consider distances p so large that p > R, p > Ra.
In that case the caleculation of the scattered field intensity is somewhat
simplified; instead of Eq. (4-23) we can use Eq. (4.24),

1%
6] ~ Je,] TRl
P

The product of the radii of curvature of the reflected wave surface at
the point P is

cos 7
Rsz =

4cost , cost 2 |sinfw , cos?w cos?w |, sin?w o
BBy T m +rz[7ér+ R, *( B, TR, ) ]
47)

The result can be put into a more symmetrical form by introducing the
angles ¢, and 6, between the incident ray and the principal axes of the
reflector £ and 7, respectively. The scattered field at a distance p from
the reflector in the direction defined by the reflected ray is then given by

_ T R:R, cos 1 *
16z = = l& [(4rg T ReR,) o5 i + 2ro(R; sin® 6, & K, win? 92)] - (48)

The bracketed term is known as the divergence factor of the surface,

RiR, cos 1

D = i T Ry cos i £ 2ro(R, sin? 6, F B, sinZ6;)

(49)

it is the ratio of scattered power per unit solid angle in the direction of
the reflected ray to the incident power per unit solid angle. By use of
Egs. (31) and (32¢), together with Eq. (48), the scattered field can be
obtained in magnitude, phase, and direction:

E, = T_I: {(n-E)n — (n x E;) xn | D¥eike, (50)

6-6. Superposition of the Source Field and the Scattered Field.—
The method of superposing the scattered field on the original field of the
sources is fundamentally the same as that used in Chap. 3 in treating the
far-zone fields of current distributions. It will be assumed that the
source field is linearly polarized. The fundamental clements are illus-
trated in Fig. 5-5. TLet P, be the total power radiated by the source,
and let G(s) be the gain function in the direction defined by the unit
vector s. The field of the source alone over a sphere of radius R is

15 P, Lh —ikR
E, = [2 (i-‘) Gc(s)] e ‘Lﬁ- (51)
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The unit vector e, describes the polarization of the field over a sphere
with radius such that kR = 2n7r, n =0, 1, 2, . . . . The total field
in a given direction s is the sum of the scattered field produced in that
direction by the reflector and the source field. In the far-zone treatment
the ray from the source to the given field point is taken to be parallel
to the ray from the reflector.

F1G. 5-5.—Superposition of the scattered field on the source field.

The field intensity incident on the reflector is

b2 1% —jkra
B= 2 () Haton | s (52)

The scattered field is then, by Eq. (50",

& e
B 1 [2(8) 2aen] 1@ eon — @ xen xnlemem; 63

the distance p has been set equal to R in the expression for the amplitude.
In so far as the phase is concerned, it is seen from the figure that

R51 = TS0 + Sy, (54)
whence
ro+p = R + ro(l + cos 2i). (55)

The total field in the direction s, is, therefore,

23 1% kR
B =[2(%) 2] G 60 pes) H DO e mmmie s, (50

€

where
e, = [n-eosy)In — [n x eyso)] xn. (56a)

6-7. The Current-distribution Method.—The geometrical-optics
method discussed in the preceding sections can furnish no information
on the structure of the scattered field that results from deviations from
geometrical propagation of the reflected wavefront. By geometrical
optics this wave is discontinuous (geometrical shadow behind the reflec-
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tor), and it was pointed out in Sec. 4-5 that in the presence of a discon-
tinuity geometrical optics does not give accurate results. The deviations
decrease in significance as the wavelength goes to zero; the geometrical-
optics method is to be regarded as a zero-wavelength approximation to
the scattered field.

The current-distribution method which wil be formulated in this
section leads to a better approximation for the scattered field and also
makes possible the analysis of secondary effects such as the reaction of
the reflector on the sources. The cardinal feature of the method is that
it attempts to approximate the current distribution over the surface of
the reflector; the scattered field is obtained from the current distribution
by Eqgs. (7) and (8) and is thus an electromagnetic field that satisfies
Maxwell’'s equations. We shall be interested primarily in the far-zone
field of the current distribution in obtain-
ing the composite pattern of the reflector
and the sources. 5

The current distribution over the re-
flector is obtained on the basis of geomet-
rical optics, which can be expected to
vield good results only if the reflector is
far enough from the sources for the field
of these to be described adequately in
terr.ns of WaVQfI:OIltS and, rays. On the Fig. 5:6.—0n the current-distribu-
basis of ray optics there is a sharply de- tion method.
fined shadow region behind the reflector
in which the total field is equal to zero. In Fig. 56, S is the reflecting
surface and T' is the boundary curve between the geometrically illumi-
nated area and the shadow area. According to the boundary condition
[Eq. (2b)], since the total field is zero, the current distribution over the
shadow area is zero. It is a matter of experience that the shadow region
is more sharply defined the smaller the wavelength and the larger the
ratio of the reflector dimensions to the wavelength. The first assumption
of our approximation technique, then, is that there is no current over the
shadow area of the reflector. The current distribution over the illumi-
nated region of S is obtained on the assumption that at every point the
incident field is reflected as though an infinite plane wave were incident
on the infinite tangent plane. TLet E;, H; again be the initial field; let
sy be a unit vector in the direction of the Poynting vector, that is, along
the incident ray. If n is the unit veetor normal to the surface at the
point of incidence and s, a unit vector in the direction of the reflected
ray, the surface current density, according to Egs. (21) and (22), is

13
K = 2(1’1 be H.) =2 (5) [l’l X (S() X E.‘)], (57(1)
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or, in terms of the reflected field E,, H, at the surface,

K=2nxH,)=2 (5) [n x (s: x E)]. (57b)
The surface charge density is obtained from the total field E; + E, by
means of Eq. (2a); making use of the plane wave relations [Eq. (15)],
we then find that the charge density is

n=2¢n-E;) =2n-E,). (58)

From the discussion of Sec. 5-4 it is seen that the procedure for obtain-
ing the current and charge distributions is based on the assumption that
the radii of curvature of the incident wavefront are large compared with
the wavelength as are also the radii of curvature of the reflector. On the
other hand, in the present case there are no conditions imposed on t'
focusing or defocusing characteristics of the reflector. It is clear thai
Eqgs. (57) and (58) represent high-frequency approximations to the actual
currents and charges and may be expected to approach the latter in the
limit of zero wavelength. The current method differs from the previous
wavefront procedure in that a frequency dependence of the scattered field
is introduced into the subsequent calculation of the field arising from the
current and charge distributions. Also, the field at a given point in
space is the resultant of contributions from all points on the illuminated
area So rather than from the point of geometrical reflection alone.

5-8. Calculation of the Scattered Field.—The expressions for the
electric and magnetic fields in terms of the currents and charges were
derived in Secs. 3-9 and 3-10. It will be recalled that the fields thus
obtained satisfy Maxwell’s equations only if the source-density functions
satisfy the equation of continuity [Eqs. (3-6) and (3-9)]. The reader can
readily verify that if the initial field E;, H; satisfies Maxwell’s equations,
the current and charge distributions given by Egs. (57a) and (58) do,
in fact, satisfy the surface equation of continuity given in integral form
by Eq. (3-9). The situation is different, however, at the boundary line
I between the illuminated and shadow regions. The current distribu-
tion is discontinuous across the boundary, being zero over the shadow
area; compatibility with the equation of continuity can be achieved only
by introducing a line distribution of charge along the curve T'.!

In Fig. 57 = is a unit vector along the boundary curve T; n; is a unit
vector in the tangent plane normal to . The linear charge density along
T will be denoted by ¢. Considering a small area of sides ds and 8l
(the latter normal to ') and expressing the condition that the net current

1 The discussion that follows parallels that given by Stratton and Chu in their
treatment of diffraction; see J. A. Stratton, Eleciromagnetic Theory, McGraw-Hill,
New York, 1941, Sec. 8:15.
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flow from the area is equal to the rate of decrease of the charge enclosed,
we obtain
0
—n,-Kds = — 6—‘;ds; (59)
the contributions from the sides 8/ vanish as 6l — 0 while ds remains
fixed. We have then
do
;- K = a
Substituting from Eqs. (57a) and (57b) for the current distribution, we
find

(59a)

%‘; = 2n, - (n X Hl) = —2«-H; (60‘1)
and

do

% - _2:.H. (60b)

For time periodic fields these give the charge distribution directly; for
we have d0/dt = jwos, whence
2 2

¢g=——=-H;=— ~=x-H,.
Jw Jw
(61)

The scattered field is thus the
sum of the contributions of three
source distributions: (1) the surface
currents over the illuminated area,
(2) the surface charges over the
same area, and (3) the line distribu- 116, 57 —Calculation of the electric charge
tion of Charge along the boundary on the shadow boundary curve I'.
curve T'.  We shall now restrict our analysis to time-periodic fields. Ap-
plving the results of Secs. 3-9 and 3-10, we find the scattered field to be

Shadow region

lluminated region

Bo= — g [ liown x Hop — (@ -E) vl s
So
1
N 27r]'we§;1, V(= Hi)ds, (620)
He = %/ (n x H)) x V¢ dS, (626)
) s

where ¢ = ¢ , with 7 the distance from the field point to the element
of area dS on the reflector; S, designates the geometrically illuminated
area; the sense of the line integral around T is such that the outward
normal to S, is on the left. The fields can also be expressed in the same
way in terms of the reflected fields E,, H, at the surface S..
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It was shown in Sec. 3-9 that if the current and charge distributions
satisfy the equation of continuity, the fields can be expressed in terms of
integrals involving the currents alone. In view of the introduction of
the boundary line distribution it will be well to carry through the details
of the transformation for this special case. It will be recalled (¢f. Sec.
3-8) that the gradient operations in the integrands of Eqs. (62a) and
(62b) are referred to the field point as an origin. Taking a rectangular
system of coordinates with the origin at the field point, let the coordinates
of a point on So be z. (x1 = &, z2 = y, 3 = 2), and let i, be unit vectors
along the z.-axes. The line integral of Eq. (62a) is then

3
fr V(e H) ds = z iu§ - (Hl- %) ds. (63)

By Stokes’ theorem each integral on the right-hand side transforms into
a surface integral:

oy _ A
fre'(Hi'BTQ>dS = /SO<V XHib*E;)'ndS. (64)

But
Vx<H%) vaj H. + ‘”VxH., (65)
and
3y 6\#
( £XH> = —(n xH)- Vo (66)
P .
(aai v x Hi) ‘n = jue @: (n- E). (67)

In the last of these use has been made of the field equation [Eq. (3:23b)].
Collecting these together, we have

_ 1N .E. W
‘21r]wef V(= H) ds _QWEIH _/Su [n E. 0T

1 oy
—]:6 (n X H,) . Vaxa] dS,

or

1 1
27rjwe§r V\&(‘V . H;) ds = gﬂ‘:/&, [(n . El) Vll/

- ]i (n x H.) - vw] dS. (68)

Substituting into Fq. (62a), we then obtain

1

Ei= g /q [(n x H,) - v(V¢) + k*(n x H»ub] as. . (69)
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It will be recognized that this is obtainable directly from Eq. (5-7) by
inserting the value for the surface current density given by Eq. (57a).
It was shown in Sec. 3-11 that the field integral, taking the form of Eq.
(69), leads to a far-zone field in which the field vectors are transverse
to the direction of propagation. The effect of the boundary line distri-
bution is therefore to cancel the longitudinal field component introduced
by the surface charge and current
distributions. Subsequent calcula-
tions can be made on the basis of
Eq. (69); the contributions of the
charge distributions need not be
evaluated explicitly.

Let p be the vector from a given
origin (see Fig. 5-8) to the element
of surface dS; let R, be a unit vee-
tor from the origin to the field
point, the distance between them
being B. The scattered field inten- Fig. 5-8.—Calculation of the total field.
sity in the far-zone is then, according to Eq. (3-128),

Es = — 222 =2 | {n xH; — [(n x Hy) - R,JR,}eeR: ¢S, (70)
27K S

The magnetic field need not be calculated separately but is given by the

far-zone relation

H; = (}—f)yz (R; x Es). (71)

6-9. Application to Point-source and Line-source Feeds.—Two cases
of major interest are those in which the initial field E;, H; arises from a
point-source system and a line-source system, respectively. Where the
reflector enters into the problem by intention as a component of the
antenna, the source system will be referred to as the feed; this term is
used extensively in later chapters.

The Point-source Feed—It was noted previously that at sufficiently
large distances from any radiating system, the latter is equivalent to a
directive point source. Microwave point-source feeds are specially
designed so that the required distances are within practical ranges for
use with a reflector.

Let the point O in Fig. 58 be the point-source equivalent of the feed;
it will be assumed again that within the cone of illumination falling on
the reflector the incident wavefronts differ negligibly from spheres about
the point O. The reference system of coordinates will be taken with the
origin at the source system. Spherical coordinates will be designated
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generally by p, 8, ¢; the coordinates of a field point in the far-zone region
of the system as a whole—reflector and feed—will be R, ©, . If G,(6,¢)
is the gain function of the feed and P is the total radiated power, the
primary radiation field—of the feed alone—is

14 17
Ei(p,0,0) =%[2 (ﬁ) nge,w] a,0)e,  (12)
€ 14
H - (;) (o1 x E), (72b)

where g, is a unit vector along p and e;(6,¢) is a unit vector defining the
polarization of the electric field intensity. The current density K at a
point p, 8, ¢ on the reflector is then

1 ¥
K =2nxH;) = %[(ﬁ) %G;(G,q&)] [n x (o1 x €:)]e~7*. (73)

Substitution of the expression for n x H; from Eq. (73) into Eq. (70)
gives the scattered field in the far-zone. Equation (70) shows explicitly
that there is no field component in the Rj-direction. Let ig and is
be unit vectors in the direction of increasing & and ®, respectively. The
transverse components of the scattered field are then

. — kR 1% P %-
B =t () 3] et (i)
. — kR 1% P 1%
- i) 2]
1%
I= f [Gf(ﬁ‘;@] [0 x (o1 x €;)]e~7*—¢RD 4g; (74¢)
So

the vector ¢ = pg, is the radius vector from O to the element of surface
dS. The total field at the point R, ©, & is

_ R [ P o 18732
E@ = Ei@ + Es(_) = T [Zr (;) :| FI(G)’q))y
F1(®)¢') = [[Gf(®)q))]%i@) : ei(®7¢)) - %1@) : I] )
e[ P 147
Eo = Eiy + Esy = "3 [5 (ﬁ> ] Fy(0,8),

Fi(0,8) = {[G;(@,@)]%icp-ei - %i.,-l}-

(75)

(76)

The magnetic field is obtained by means of Eq. (71). The Poynting
vector of the total field is S = + Re (E x H*), and the power per unit
solid angle P(©,®), radiated by the system as a whole in the direction
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(0,®), is R?|S|; hence, the gain function of the composite system is

¥
€
4POF) " (;) {|Egl* + |Eq|*}R?
P P

G(0,2) = (77a)

or
G(6,2) = |F1|* 4 |F.|2 (77b)

The Line-source Feed.—Line-source feeds are generally used with
a cylindrical reflector, the generating element of which is parallel to the
line source. The following analysis will be confined to such systems.

Y
3

F1g. 5:9.—The cylindrical reflector with a line-source feed.

The line source may be a system of point-scurce radiators distributed
along a line, such as the linear-array antennas discussed in Chap. 9,
or it may take the form of a long, narrow, rectangular aperture through
which energy is being radiated into space. It will be assumed that the
length ! of the source is large compared with the wavelength.

The reflector and source system are illustrated in Fig. 59, with the
source along the r-axis. We shall assume that the maximum distance
from the latter to the reflector does not exceed 12/A and that the minimum
distance is large compared with the wavelength. Within such distances
from the source its field is essentially in the form of a eylindrical wave
(¢f. Sec. 3-7). The wave incident on the reflector is, therefore, best dis-
cussed in terms of cylindrical coordinates. The z-axis in Fig. 59 serves
as the axis for the cylindrical coordinate system, the polar coordinates
of which, in the planes normal to the z-axis, are denoted by p and .

The cylindrical-wave zone can be divided into two general regions:
(1) a near-zone region in the immediate vicinity of the source and (2)
a quasi-radiation zone at distances large compared with the wavelength
but less than 12/A.  In the latter region the predominant components of
the field lie in the tangent plane of the cylindrical wavefront and are
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mutually perpendicular as in the case of the isotropic cylindrical wave
discussed in Sec. 3:7. With a general line source, the field intensity is not
uniform over the wavefront but varies both along the z-direction and
about the cylinder axis. The radiation-zone field can be written

—7ke
E(pdz) = A2) (78a)
and

e\
H = <;> (91 x E), (78b)

where p; is & unit vector in the direction of increasing p. The radiation
zone of the cylindrical wave field is to be distinguished from the general
far-zone field with respect to which the line source behaves like a point
source.

We shall confine our attention to fields in which the polarization is
uniform over the wavefront. Two fundamental cases are to be consid-~
ered: (1) longitudinal polarization in which the E-vector is parallel to
the z-axis, so that

A,x) = A¥,2)in (79a)
and (2) transverse polarization in which the electric vector lies in the
planes transverse to the z-axis, that is,

A@,x) = A(Y,2)iy; (79b)

the vectors i, and i, are the basis vectors of the cviindrical coordinate
system. In most cases of interest the amplitude function 4 (y,z) is sepa-
rable in its dependence on the two coordinates. Referring to the power
flow rather than the amplitude, we shall introduce a two-dimensional
gain function G(y). Let P be the total power radiated by the source;
let (P/D)F(x) dx be the total power in the cylindrical wave field between
the planes x = constait and * + dr = constant. The power radiated
per radian between these planes in the direction ¢ ‘s then

Play) dzdf = o = F(z) dz G(y) (80)
The gain function G(¥) must obviously satisfy the condition
/ﬁ GW) dy = 2m. (81)

The function F(z) expresses the distritution of fntensity along the y-direc-
tion; it must satisfy the condition

/2
/ P dx =1, (82)

J =i
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it being assumed that the origin of the coordinate system is at the center
of the line source. The amplitude A (z,¥) may be evaluated in terms of
the power-distribution functions as in the case of the point-source feed.
The magnitude of the Poynting vector is

; A
5 = §1Re (& xmn) = 1 ()" 14E.

We have then

1/e\* 2 1P
5(;) |[A|2dy dx = é;TF(x) dzx G) dy (83a)

¥ 16
el = [ (&) Prayow |- (830)

The current densities, or rather n x H.,. for the two types of polariza-
tion are the following:
1. Longitudinal polarization:

P 1%
()2 Q@] i,)e—ike
nxH; = [(ﬁ) I F(z) p n x (o1 x i;)e~7*, (84a)
or ¥
3
o xH =i, [(5) P r (M] cos i e=its, (84b)
w) Ir P
2. Transverse polarization:
N R -
axi = [() 2@ P o xinem, o0
or

n x H, [(u) Flz )G("’)r s, (85b)

i
The angle ¢ is the angle of incidence, and = is a unit vector tangent to
the cylinder in the cross-section plane. The positive directions of the
angles and vectors are shown in Fig. 5-9.

The far-zone field is expressed in terms of spherical coordinates.
Because of the geometry of the system it is convenient to use a set of
spherical coordinates somewhat different from that used in the treatment
of the point-source field, the z-axis being taken as the polar axis: the
definition of the coordinates is given in Fig. 5-9. Let ig and is again be
unit vectors in the increasing ©- and ®-directions. For the case of the
longitudinally polarized source, the scattered field is

T FEAYS
Es, 21rR67 [(ﬁ) Z7r:| cos ®

14
x/ [F(z)gfoi)] cos i e—*e—(@+si) Rl dg dz];  (86)
So



154 SCATTERING AND DIFFRACTION [8Ec. 59

ds is the element of arc length along the cross section, or

_ 1dp\?
e

The scattered field has no ©-component, the electric vector lying entirely
in the meridional plane passing through the z-axis. The scattered field
for the transversely polarized source is

. 18 I 2
it =l (ORI WALSE
So
X e~kle— @+ R s dy.  (88)

In this case there is also a ®-component proportional to sin & in
magnitude. However, if I 3> \, the beam is confined to the neighborhood
of ® = 0 and the cross-polarization component is small.

On expressing the vectors ¢ and R, in rectangular components, one
finds the phase factor of the integrands of Eqs. (86) and (88) to be

p— (o4 zi;) - Ry = p[l + cos ® cos(y + ®)] — zsind. (89)

It is apparent that the integrands are factorable into a function of z
and a function of . Considering the central plane & = 0, we see that
the ©-dependence of the field arises entirely from the integral over ¢;
the field distribution is determined by the angular characteristic G(¥)
of the source and the cross-section contour of the reflector. As regards
the planes © = constant, both aspects of the reflector contribute to
some degree. However, it will be shown in Chap. 6 that if the length
1 is large compared with the wavelength, the major portion of the field
is confined within a small angular region & about the central plane. Over
this region the variation of cos ® in Eq. (89) is of second order compared
with sin ®; on setting cos ® = 1, separability is obtained, the field dis-
tribution in the planes ® = constant being determined entirely by the
linear characteristic of the source F(z). The transverse distribution of
the field is thus virtually the same for all transverse planes.

The primary field of the source alone must be added, of course, to
the scattered field to obtain the total field. Here the far-zone field
of the source (for which it is effectively a point source) must be used
instead of the cylindrical wave field of the radiation zone. It will be
assumed that this is known and expressed in a form similar to Eq. (72a),
in terms, of course, of the spherical coordinates shown in Tig. 5-9. Tt is
also assumed that the equivalent point source is located at the origin
of the coordinate system, since the phase terms entering into the reflector
field have been referred to that origin. The procedure for superposing
the fields is exactly the same as that delineated in the previous case and
need not be discussed further here.



Sec. 5-10] REACTION OF A REFLECTOR 155

Attention should be called to one point in the procedures discussed in
this section that has been the cause of some concern in the past. It wili
be found in general that the radiation field of a current distribution—
such as is given by Eqgs. (72) and (78)—does not satisfy Maxwell’s
equations exactly. Consequently, except in special cases, the current
and charge distributions on the surface of the reflector, as found by the
methods already outlined, do not satisfy the equation of continuity
exactly. However, the terms that are neglected, which would result in
satisfying the required conditions exactly, are smaller in order of magni-
tude than the radiation field components and are in general in time
quadrature with the latter; they therefore introduce a nonessential con-
tribution to the scattered field and the scattered power pattern.

6-10. Reaction of a Reflector on a Point-source Feed.—One of the
fundamental problems in the design of an antenna employing a reflector
is the effect of the latter on the impedance characteristics of the antenna.
The problem can be treated on the basis of re-radiation from the current
distribution on the reflector;' the analysis will be carried out here for
the case of a point-source feed.

The radiating system that constitutes the feed must be eonsidered
in its relation to a transmission line. The basic idea of the following
analysis 1s that the interaction between the feed and the field of the cur-
rent distribution on the reflector gives rise to a “reflected” wave in the
transmission line and thus an impedance mismatch from the point of
view of the line. Our object is to calculate the reflection coeflicient—
ratio of the reflected to incident wave amplitudes—in the transmission
line due to the reflector. The field of the reflector, which is given in
general by Eq. (69), is regarded as a superposition of spherical wavelets
arising from every element of surface dS. The total reflected wave in
the transmission line is then considered to be the sum of component
waves arising from the interaction between the feed and the separate
wavelets. The current element K dS is regarded as a dipole source, and
only the radiation terms are retained for the individual wavelets. The
interaction between one of these and the feed is evaluated on the assump-
tion that the distance from the reflector to the feed is so large that the
wavelet can be regarded as a plane wave over the effective area of the
feed. This assumption is consistent with our previous condition that
the reflector be in the far-zone of the feed system. DMultiple scattering
between the feed and the reflector is neglected; this is likewise consis-
tent with the previous assumptions.

It will be assumed that in the absence of the reflector the feed is
matched to the transmission line; there is then only an incident wave
within the line. Let V. be the voltage at some reference cross section

18, Silver, “Analysis and Correction of the Impedance Mismatch Due to a
Reflector,” RL Report No. 810, September 1945.
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of the line. The total power transported across the reference cross sec-
tion is
P = OIIV.;|2, (90)

where « is a constant characteristic of the line and the field distribution
over the cross section of the line. If the dielectric and ohmic losses in
the line and the radiating system are negligible, P is the total power
radiated by the feed. By Eq. (73), the current density at a point p,
8, ¢ on the reflector, with its phase referred to that of the voltage at the
reference cross section in the line, is

K - 2(n H-)—QV‘[i<i " a6 )]./,n (o1 x e)e.  (91)
= x ;) = P o u 76,9 X (01 X €; .

Expanding the vector term, we have
n x (o1 x€) = (n-e)p; -+ e cos i, (92)

where 7 is the angle of incidence. The current is here resolved into one
component along the incident ray and one component parallel to the
polarization of the primary field.

The field of the wavelet arising from the current element K dS is the
integrand of Eq. (69):

1

Trjare [(n x Hy) - V(V¥) + k2%(n x H)y] dS.

Applying the results of Egs. (3-125) and (3-126), one sees that the radia-
tion field components arise only from the component of the current that
is transverse to the direction of propagation of the wavelet. Conse-
quently, to the order of approximation that all the other terms are
neglected, the component of the current in the direction g; contributes
nothing to the reaction on the feed. As regards the component in the
direction e; it is observed that this coincides with the polarization of the
feed and therefore no polarization obliquity factor enters into the inter-
action with the feed. The field intensity of the spherical wavelet with
which we are concerned is then

_jkz
dEr = m (n XHL') 'eidS
or
. 13 15
dE, = ‘27“’5 Vv '[ﬁ (f> Gf(o,¢)] cosi e~i2 ds. (93)
TP 2m \u

The magnitude of the Poynting vector of the spherical wavelet is

18, = é(ﬁ) dE 2.
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If the wavelet may be considered plane over the receiving cross section
of the feed [see Eq. (2-80)], the power that would be extracted from the
wavelet acting alone is

aP. = 18.6/(0,6) 1. (94)

The voltage dV. of the reflected wave set up thereby in the line, at the
given reference point, is

1% 2 14
v = () e = [ Q2 (5) 00| amemen )

a 8ra \u

The phase term § is a constant determined by the feed and the choice
of the reference point; we need not be concerned with its precise value.
Substituting Eq. (93) into (95), we obtain the reflection coefficient con-
tributed by the element of surface dS of the reflector:

_dv,
=5 =

The phase term &' absorbs the —j of Eq. (93). The reflection coefficient
due to the entire reflector is, therefore,

dar

1 . ’
47r—p2Gf(0,¢) cost e~ 1(Fetd) 4§, (96)

T = e [g%‘%f—) cost e 7% dS. 97)

Use will be made of this result in Chap. 12 to devise a method for elimi-
nating the mismatch.

The principle of stationary phase (Sec. 4:7) may be applied to the
integral of Eq. (97) to obtain an estimate of the mismatch for the case
of short wavelengths. It will be recognized that the phase is stationary
at those points on the reflector at which the rays from the feed strike at
normal incidence. The essential contribution to I' arises from the area
in the immediate neighborhood of the stationary point. The calculation
is hardly different from that used for Eqs. (4:46) to (4-51) and will not
be given here. If G, is the gain of the feed in the direction of normal
incidence, p, the feed-to-reflector distance, R; and R, the principal radii
of curvature of the reflector at the stationary point, we have

G RR, ]‘/ﬁ ot
T = 8pn [(Rz F o) By F o) © 7 ' (98)

If there is more than one point of normal incidence, the total effect is
obtained by summing the separate values of T,.

The same result [Eq. (98)] can be obtained directly on the basis of
geometrical optics.! The reflected field intensity at the feed is deter-

18. Silver, “Contribution of the Dish to the Impedance of an Antenna,” RL
Report No. 442, September 1943.
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mined by considering the dispersion of a small incident cone of rays by
the reflector, making use of the techniques of Sec. 5-5.

6-11. The Aperture-field Method.—It was shown in Sec. 3-8 that the
field at a point in space lying outside a surface that encloses all the sources
of the field can be expressed in terms of integrals of the field vectors over
the surface. Thus, if the scattered field E,, H, is known over any surface
2 that surrounds the reflector completely, the scattered field at an
external point P in space is given by Eqgs. (3:108) and (3-109):

BP) = o [ [=jonta xHy
+ (n xE,) x V¢ 4 (n- E,)V¢]dS; (99a)

HP) = & [ lisctn x By
+ (n xH) x vy + (n-H,) vWldS. (99b)

In applications to antenna problems, the field over £ may not be
known. The aperture-field method formulates a high-frequency approxi-
mation to the field. The surface Z is taken in the immediate vicinity
of the reflector, and it is assumed that energy passes to T from the
reflector by propagation along the reflected rays. The field over 2 is
then calculated by the methods of Sec. 55 in conjunction with Eq. (4-23);
the same conditions must therefore be imposed on the radii of curvature
of the incident wavefront and the reflecting surface.

The present method has no special advantages over the current-dis-
tribution method for the treatment of an arbitrary reflector. However,
there is one class of reflectors for which it has decided advantages, both
in ease of application and in establishing relations with other phe-
nomena. The reflectors to which the method is particularly suited—
and to which the subsequent discussion is restricted—have the property
that the entire family of rays reflected from the illuminated area S, lie
in one hemisphere of space, as shown in Fig. 5-10; also, in the neighbor-
hood of the reflector it is possible in general to draw a finite curve I'y
circumseribing the entire family of reflected rays. The shadow boundary
T on the reflector then defines an aperture and serves as an exit pupil for
the reflected rays, which can be regarded as arising from a distribution of
image sources behind the reflector.

On the basis of the ray diagram it is to be expected that the scattered
field will be concentrated largely in the hemisphere of space containing
the reflected rays. Our discussion will pertain to points in this region,
and the surface T will, therefore, be taken to be made up of an infinite
plane containing a curve such as T'4, plus the hemispherical cap of infinite
radius. The aperture of the system may be defined as the area A on
the infinite plane circumscribed by the curve I'y obtained by projection
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of the shadow boundary T along the reflected rays. It may be noted at
this point that since the scattered field must satisfy the radiation condi-
tions [Egs. (3:113) and (3-114)] at infinity, the hemispherical cap will
make no contribution to the field integrals in Egs. (99a) and (99b).

It is evident that the determination of the scattered field over the
plane Z by reference to the reflected rays leads to a discontinuous dis-
tribution, with a nonzero field over the area circumscribed by I'x and
zero field over the area of Z outside I'y. This introduces into the problem
a feature that is equivalent to the discontinuity in the current distribu-
tion over the reflector at the shadow boundary in the previous method.

Y

I'1¢. 5:10..—On the aperture-field method.

It was pointed out at the close of Sec. 3-8 that the terms entering into the
integrands of Eqs. (99a) and (99b) can be sct into correspondence with
surface distributions of electric currents and charges and magnetic cur-
rents and charges. The electric and magnetic fields over the surface
cannot be assigned arbitrarily; they must be assigned in such a way that
the equivalent current and charge distributions satisfy the surface equa-
tion of continuity [Eq. (3-9)] if the integrals are to give field components
that satisfy Maxwell's equations. In order to make the distributions
over 2 compatible with the equation of continuity it is necessary to
introduce line distributions of electric and magnetic charges along the
boundary curve T 4.

The computation of the boundary charge distributions proceeds along
exactly the same lines as in the case of the current-distribution methods.!
With E,, H, denoting components of the scattered field over X, the
density o, of the boundary line distribution of electric charge and the

! See also J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, 1941,
Sec. 8-15.
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density o, of the magnetic charge are
- - LleH); en=l(-E) (100)
Te = jo o ) m jo r)e

The unit vector = and the positive normal n to the surface Z are defined
in Fig. 5:10. The amended expressions for the fields are then
1

" dnjwe

+ g /A [—juutn x H)¥ + (n x E) x V¢ + (- E,) W] dS (101a)

E.(P) =

§UV¢(1 “H,) ds

and

H(P) = g, S B) ds
+ % ) [jwe(n X Er)¢ + (n X Hr) x VY + (l'l . Hr) V\L] dS’ (101b)

where A is the area enclosed by T'4.

The integrals over the boundary T's can be transformed into surface
integrals by the same process used in transforming Fq. (5-62a). It is
then found that the field expressions are

E(P) = g f e xH)Y F (a x H) - V(5Y)
+ jwe(n x E,) x VY] dS, (102q)
P = — oL [ em B+ e xE) v

— jou(n x H,) x VY] dS. (102b)

The boundary line charges have the same effect here as in the case of
the current distribution: They cancel the longitudinal field component
of the far-zone field that arises from the surface current and charge
distributions.

The discussion has been developed with reference to a plane area.
This is not necessary for the application of Eqgs. (99a) and (996); the
surface £ may be any curved surface of infinite extent that divides the
space into two regions—one of the reflector and one of the scattered field.
The aperture area in that case will be a curved surface bounded by a
curve I'4 that is the projection of the shadow boundary along the reflected
rays. There is no change in the final result; the integrals (102a) and
(102b) apply to the curved aperture surface A.

5-12. The Fraunhofer Region..—We shall now carry through the
reduction of the integrals for the far-zone field. The latter will be referred
to henceforth as the Fraunhofer region because of the relation of the
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problem to optical diffraction problems. The latter will be discussed in
a later section.

Let g again be the vector from the origin of the coordinate system to
the element dS of the aperture area and R; a unit vector from the origin
to the field point in the direction 8, ¢. Applying the results of Sec.
3-11 and inserting therein the expressions for the electric and magnetic
currents given in terms of the fields by Eqgs. (3-111), we find that Eq.
(102a) reduces to

E.(P) = %f e *ER, x / [n x E,
A
- (%) R, x (n x H,)] R 7S, (103)

Let s be a unit vector along a ray through the aperture. In the geomet-
rical-optics approx‘mation, the electric and magnetic fields over the
aperture are related by

H = ofs x E). (104)

[In free space a = (e¢/p)**. However, as we shall see later, the reflector
is only one special case of an aperture problem; the theory can be applied
to problems such as the radiation from horns in which « will have some
other value.] Substituting for H, in Eq. (103), we obtain

E.(P) = % eTHER, x /A {n xE, — « <%> [Ri- (s x E)n
— (s xE)(@n- Rl)]} ereRi dS  (105)

For some purposes it may prove convenient to take as the aperture
area A the wavefront of the system of rays. In that case the unit
vectors s and n are identical, since the rays are normal to the wavefront,
More generally, however, it is convenient to use a plane aperture; the
vector n is then constant over the surface and in the direction of the polar
axis of the spherical coordinate system. The field E, over the aperture
is generally specified in terms of the polarization, magnitude, and phase
distribution ¥(x,y). If the wavefronts associated with the rays through
the aperture are the surfaces L(r,y,2) = constant (¢f. Sec. 4-2), the phase
distribution is

Y(x,y) = kol(2,y,0), (106)

where ko = 2x/No is the frec-space prcpagation constant. From Eq.
{4-10) it follows that the components of the vector s over the aperture
plane are
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_13v. 10V

= = - = = — 52— g%k, ~
R R T R e DR
The total power passing through the aperture is the integral of the normal

component of the Poynting vector:

pP= lf Re (E, x HY) - nds = ‘—"/ B[ d8. (108)
2 Ja 2/

The gain function for the aperture is therefore
G = 5 BIEP)

3 (109)
/A E,|%5, dS

It is overlooked in many treatments of aperture problems that if
there is a phase distribution over the aperture other than a constant
phase, the field vectors E.; H, do not lie in the aperture plane and the
Poynting vector is not normal to the plane. In cases where the phase
distribution ¥(z,y) represents small deviations from constant phase,
these factors can be neglected without too serious an error. Subject
to this approximation, Eq. (105) simplifies to

E.(P) = :i_’“;]%ﬁ R: x Kn + a (5)&) x N} (110)

where the vector N is
N — / Ere,rkusinﬁcnsa‘;ersinosinm ({S_ (1]0(1)
A

The expression for p - R, for the plane aperture has been inserted. In
using these relations it must be kept in mind that the field vectors are
assumed to lie in the aperture plane. The 6- and ¢-components of Eq.
(110) are

Jhe—ikE

E., = e [l + « (%) cos 6] (N:cos ¢ + N, sin ¢), (11la)

. — jhemikn ) ) M e .o . )
E., = By [C()b 6+ a(;) ] (N.sin ¢ — Ny cos ¢). (1i1d)

DIFFRACTION

B-13. General Considerations on the Approximate Methods.—Both
the current-distribution and aperture-field methods led to a calculation
of the seattered field as arising from a distribution of sources over an
open surface, the boundary of which is defined by the system of reflected
rays. In contrast to the geometrical-optics method, the field at anv
point was found as the superposition of contributions from all elements of
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the source distribution. In general, therefore, the last two methods will
lead to nonzero field intensities in the region of space not covered by
the system of rays; also, in the region of the rays, the fields will differ from
those obtained on the basis of geometrical scattering. These deviations
from geometrical propagation of the scattered field are known as diffrac-
tion phenomena.

The diffraction effects are due fundamentally to the fact that the
sources are distributed over an open surface; that is, the reflected wave-
front is not a closed surface. The same effects will arise no matter by
what process a field distribution is generated over a finite open area in
space. Thus a lens illuminated by a point-source or line-source feed
likewise defines an exit pupil for the syvstem of rays incident in it and
produces a segment of a wavefront in its aperture plane. Lenses and
reflectors that have aperture arcas of the same size and shape and produce
the same field distributions over the apertures have field natterns that
differ in no essential detail. The same phenomena are observed when a
wave passes through an aperture in an infinite opaque screen or through
the mouth of a horn into free space.

Experiment shows that whenever the dimensions of the aperture are
large compared with the wavelength, the diffraction effects are small and
the major portion of the field pattern is concentrated in the region covered
by the rays from the aperture.  On the basis of this fact a common high-
frequency approximation technique is used for all problems of the type
mentioned above. The mathematical details have already been devel-
oped in Secs. 5:11 to 5-12, and we need only summarize here the general
ideas in the application of the results to the various types of problems. In
cach case the aperture area is associated with a surface I of infinite extent
which divides all space into two separate regions. The problem is then
equivalent to that of an aperture in an infinite screen on the surface Z. It
is assumed that the field over I is zero everywhere except over the aper-
ture areua; in effect, it is assumed that diffraction effeets at wide angles
with respect to the aperture-ray system are negligible. In the case of the
reflector and lens it is assumed that the aperture field is produced by geo-
metrical reflection or refraction of the rays from the primary feed. In the
case of a horn the aperture field is taken to be that which would exist over
the aperture area in a horn of infinite extent—possibly after correction is
made for reflection from the opening. In the infinite screen problem,
the aperture field is taken to he that which exists over the area in the
unperturbed wave in the absence of the screen.

As was pointed out in Sec. 5-11, the calculation of the diffraction field
is based on the integrals of the field equations obtained in Sec. 3-8 by
means of Gireen’s theorem. However, the application of Green’s theorem
was predicated on certain assumptions concerning the continuity of the
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distribution over the surface—assumptions that are not fulfilled by the
distribution over Z in the approximation technique. The method should
rather be considered to be based on the Huygens-Fresnel principle which
postulates that each point on a wave surface is a source of elementary
fields (¢f. Sec. 4-1), and the results of the Green’s theorem integration
are to be regarded as furnishing the appropriate identification for the
sources as stated in Egs. (3-111). The requirement that the source
distribution must satisfy the equation of continuity then leads to the
addition of a line distribution of electric and magnetic charge along the
boundary of the aperture surface. Thus Eqs. (10la) and (1016) and
hence Eqgs. (102a) and (102b) derived from them apply to all diffraction
problems in the high-frequency approximation method; the ficlds E,, H, are
to be interpreted quite generally as the fields over the aperture surface.

65-14. Reduction to a Scalar Diffraction Problem.—In many antennas
the field over the aperture is almost completely linearly polarized, only
a small fraction of the energy being in the cross-polarization component
of the field. If the latter is neglected, the calculation of the diffraction
field is simplified; by a further approximation, consistent with the
high-frequency approximations made already, the problem can be reduced
to a scalar diffraction problem.

The analysis will be restricted to a plane aperture; the aperture will
be taken in the zy-plane as in Fig. 510, and the electric field will be taken
to be polarized in the z-direction.

It was pointed out in Sec. 4.1 that the integrals of Egs. (99a) and
(99b) can be transformed into

E.(P) = 41” [¢ % _g "’“] as, (1124)
H,(P) = ;ﬂ/ [\p— - H‘”] ds, (1125)

provided that Z is a closed surface over the whole of which E and H
are continuous. Kquations (112a) and (112b) are each a set of three
equations for the three cartesian components of the field vectors; the
normal derivative 9/dn is applied component by component. If Z is an
open surface, as in the case of the diffraction problem, a similar trans-
formation can be effected; additional terms appear that vanish in the
former case of integration over a closed surface. The reader can verify
that for the aperture the integrals transform as follows:

—11; /A [—jou(n xH)Y + (n xE) x V¢ + (n- E) v¢]dS

1 oy 1 . N
- - A[\/x——E ]dS+E§FA¢Excds, (113)
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a similar expression holds for Eq. (99b). The line integral around the
boundary is different from that of the line distribution of charge but
arises from the transformation of the surface integrals into one another.
The diffraction field is the sum of the contribution of the surface integral
and the line distribution of charges on the boundary. The complete
expression is then

E(P) = 417r <¢——E%)ds+4i§,¢(f:xc>ds

wwe f Vy(z - H)ds. (114)

If the field over the aperture is linearly polarized with, say,
E, = E, =0,

the surface integral contributes only to E.(P). As is seen in Fig. 5-11,
this leads to a component of the field in the direction of propagation.

E(P)

Fia. 5-11.—Reduction to a scalar diffraction problem.

For a given angle 8, the order of magnitude of this longitudinal component
is at most E.(P) sin 6. The vector E x = is normal to she aperture.
It therefore gives rise only to a component E.(P); the contribution of the
latter to the transverse field is again proportional to sin 8. Now the
high-frequency approximation method is based on the assumption that
the diffraction field is contained almost entirely in the region of small
values of 6; therefore in the significant region of the field the longi-
tudinal and transverse components arising from the surface integral and
E x = respectively are negligible, and the surface integral may be taken
alone to calculate the transverse field. As regards the longitudinal com-
ponent introduced by E x =, it will be recalled that the third integral
of Eq. (110) was such as just to cancel the longitudinal component of the
field introduced by the first two terms. Therefore, the last two integrals
of Eqs. (110) virtually cancel each other for small angles 8.
The diffraction field is thus given by the scalar integral formula

o = 417r (\0;_ a‘”)ozs (115)
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where u stands for the particular component of the field involved. It
will be recognized that this is the Kirchhoff diffraction formula used in
physical optics.!

In the geometrical-optics approximation the field in the region of
the aperture has the form (Sec. 4-5)

u = A(x,yz)e kv, (116)

where A(z,y,2) is the amplitude and L(z,y,2z) = constant are the equiphase
surfaces. Then
ou

_6_n=n.Vu= —jkoun « VL 4+ u

1o

1f the wavelength is short, k, is large and the second term may be neg-
lected in comparison with the first:

ou .
an =~ ~Jjkoun - VL. (118)
The field over the aperture is usually given in terms of the amplitudao
A(z,y,2) and the phase distribution ¥(z,y) = koL(x,y,0). If sis the unit
vector in the direction of ray at a given point on the aperture, we have
by Eq. (4-10)2

ko VL = ks; (119)
then
Ju .
an = TJkun-s. (120)

The components of s in terms of the phase distribution ¥(z,y) have been
given previously in Eq. (5-107).
With regard to d¢/dn it is observed that

a _d feikr
a—n—n V\,b—E(T )n I

a [, 1 . e ikr
= (]]x + ;) n-r; o b (121)

or

an

where r, is a unit vector from the point on the aperture to the field point.
Collecting the terms in Eq. (115), we obtain

1 ekt . 1 .
Up = — U EF+=)n-r kn-s|dS. 2
Rl P [(J + - 147 S (122)
! See, for example, M. Born, Optik, reprint by Edwards Bros., Aun Arbor, Mich.,
1943.
? This covers the general case in which the wavelength in the region of the aperture
differs from that in free space.
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For the far-zone field the customary approximations are made with
regard to e~#7/r. In addition, n-r; = n- R, = cos 6 is constant over
the aperture, and 1/r is negligible compared with jk. The far-zone ficld
is, therefore,

4

Up ~ L"'R ek /A ue*eRi (0« s + cos ) dS, (123)

where p is the vector from the origin to the surface element dS. Atten-
tion should be directed to the n - s term. Only if the phase distribution
over the aperture represents a small deviation from constant phase can
n - s be set equal to unity with little error. In that case, we have

Up =~ % e #E (1 + cos 6) /A ue@Ri gS, (124)

5-16. Babinet’s Principle for the Electromagnetic Field.—Consider-
able progress has been made during the past few years in obtaining rigor-
ous solutions of diffraction problems. Discussion of these would carry
us beyond the scope of this work. Attention must be called, however, to
the relation of Babinet’s principle to the electromagnetic field that results
from the solution of the problem of the diffraction of a wave by a plane
metal screen of infinite conductivity.?

It will be well to recall the form of Babinet’s principle as it applies
to a scalar wave field.? Suppose that we have a plane opaque screen in
the zy-plane; A, is the area covered by the screen and A, is the aperture
area. The complementary screen is defined to be that covering the area
Ao and having aperture area 4,. In both cases let there be an initial
field u; arising from sources in the negative z-region of space, and let
u; and w2 be the diffraction field produced in the positive z-region by the
respective screens. The optical Babinet’s principle states that the sum
of the two complementary fields at any point is equal to the initial wave
amplitude at the point in the absence of any screen:

U = Uy + Up (125)

This relates the problem of diffraction around a metal sheet of finite
area to the diffraction of a wave through an aperture of the same size
and shape in an infinite plane sheet.

The principle for the electromagnetic field is fundamentally different
in that the initial fields are complementary as well as the screcns. Let
E; = F, H; = G be the initial field arising from sources in the negative
z-region in the case of one of the screens, and let E;, H, be the diffraction

'H. G. Booker, “Babinet’s Principle and the Theory of Resonant Slots,” TRE
(Great Britain) Report No. 29, December 1941; E. T. Copson, Proc. Roy. Soc., A
186, 100 (1946).

* M. Born, Op. cit.

’
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field in the positive z-region. Let E, = —G, H; = F be the initial field
in the case of the complementary screen and E., H, its diffraction field.
Then
E;+H;=F, (126)
H,-H,=0G. 127)

The incident field for the complementary screen is rotated 90° with
respect. to the first field, and the complementary relation exists between

r///////l
‘/ l [ L el
///////1

®
Fic. 512, —Relatxon between a slot and a dipole radiator.

the electric and magnetic field vector of the respective diffraction fields.

This principle leads to a useful relation between the radiation field
of a slot and that of a dipole. Let S be a slot in an infinite plane con-
ducting sheet, excited by a generator across its center as shown in Fig.
512a. The complementary dipole is a similar thin metal strip (Fig. 5-12b)
energized by & generator across an infinitesimal gap at its center. The
field vectors over the slot are perpendicular to the corresponding field
vectors in the case of the dipole. It then follows from the Babinet’s
principle that the radiation field of the slot is the same as that for the
dipole, but with the electric and magnetic field vectors interchanged; full
details of the proof will be found in the paper by Booker.




CHAPTER 6
APERTURE ILLUMINATION AND ANTENNA PATTERNS
By S. Sitver

6-1. Primary and Secondary Patterns.—The discussion of aperture
systems will be continued in the present chapter with the object of
developing in more detail the relations between the aperture field and the
diffraction field. The results will furnish a basis for the design of the
reflectors and lenses used in directive microwave antennas. The design
considerations for such systems fall into two major groups: (1) trans-
formation of the specifications that the radiation pattern of the antenna
as a whole is required to meet into requirements on the aperture-field
distribution, and (2) the design of the primary feed and reflector or lens to
produce the required aperture field. The radiation pattern of the com-
posite antenna will be referred to as the secondary paitern ia distinction
to the primary pattern of the feed system.

It must be kept in mind that strictly speaking the secondary pattern
is a superposition of the diffraction field from the aperture ani the field
of the primary feed (¢f. Sec. 5:1). Microwave feeds, however, are
designed to have such directivity that the major portion of their eénergy
is directed into illuminating the optical device. The overlapping of the
field of the primary feed and the diffraction field gives rise, therefore, only
to second-order effects; these will be treated in later chapters in the
discussion of specific antennas. The secondary pattern can thus be
resolved into two parts: (1) the diffraction field of the aperture and (2)
the portion of the primary feed field that is not intercepted by the optical
system. Specifications imposed on the secondary pattern (intensity level
relative to peak intensity) in the second region are therefore require-
ments imposed on the primary feed pattern in addition to the require-
ments pertaining to the production of a desired aperture field.

6.2. The Diffraction Field.—The discussion will be restricted to a
plane aperture and will be based on the scalar field approximation devel-
oped in Sec. 5-14. 1t is therefore being assumed that the field over the
aperture is uniformly polarized in one direction, which, to fix our ideas, is,
say, the z-direction, the aperture being taken in the zy-plane (Fig. 6-1).

Let the coordinates of a point in the aperture be £, 5 and those of a
field point P be x, y, 2. Tt will prove convenient to change the notation
somewhat from that used in the preceding chapter. The field over the
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aperture will be designated by F(£,n); A (1) will be the amplitude distribu-
tion, and ¥(£,7) the phase distribution, so that

F(&m) = A(gn)e ¥, (n

The method of determining the system of optical rays through the aper-
ture associated with the phase distribution ¥(£,4) was discussed in Sec.

z
T PAz,y,2)
(¢,7,0) ER,
}
n =iz

F16. 6-1.—On the diffraction field.

5:12; the explicit relations between the components of a unit vector 8
along a ray and the phase function are given in Eq. (5-107). If r, is a
unit vector in the direction from the aperture point (£,7) to the field point
P, then according to Eq. (5-122) the diffraction field U, is given by

1 kL, 1\, .
UP=4_T/AF(£yn)eT‘[(]k+;>lz'rl+.7klz's:| dfd"] (2)

The diffraction field may be divided into three general zones which
are determined mathematically by the nature of the approximations
that may be made in the integral [Eq. (2)]. The three zones are also
differentiated by the structure of the field, but it should be noted that the
boundaries of these regions are not sharply defined.

First there is the near-zone region of points in the immediate neighbor-
hood of the aperture for which no simplifying approximations can be
made in Eq. (2). Although the dimensions of the aperture are large
compared with the wavelength—an assumption that underlies the use of
Eq. (2)—there is in general, for a given field point in this region, an
appreciable area of the aperture for the points on which the 1/r term in
the brackets of the integral is not negligible compared with £ = 2»/\.
The region extends several wavelengths outward from the aperture, and
it will be readily appreciated that this is not exactly infinitesimal for the
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wavelengths of the orders of magnitude of the microwave region. Also,
for the near-zone region, the variation of i, - r; over the aperture for a
given field point must be taken into account. The integrations are in
general difficult to carry out, and a detailed study of the integral for this
region is beyond the scope and purpose of our present discussion. In
such cases where the field has been worked out in detail it has been found
that the near-zone field is determined essentially by geometrical propaga-
tion along the aperture-ray system with fluctuations in intensity over the
phase surface due to interference effects; the mean value of the intensity,
however, differs little from that of the geometrically propagated field.
The shadow region boundary is quite sharply defined.

Attention should be called to the fact that the scalar diffraction
integral [Eq. (2)] can at best yield only qualitative results for the near
field zone. In this region the contributions of the line integrals along the
aperture boundary in Eq. (5:114) will make significant contributions to
the field and must be taken into account if the results are to have a
quantitative value.

From the near zone we pass into the region of the diffraction field
which we shall call the optical-Fresnel field by virtue of its correspond-
ence to the Fresnel region of optical diffraction problems. Several
simplifying approximations are introduced; the orders of magnitudes of
the errors involved must necessarily be evaluated for each case separately,
To start with, the term 1/r in the brackets of Eq. (2) is considered to be
negligible with respect to k; at a distance of several wavelengths from the
aperture this approximation is reasonable. Second, the variation of
(i.+ r1) over the aperture is neglected, and the term is replaced by the
constant i, - R; = cos 8, where R is a unit vector directed from the origin
to the field point. A third approximation in the same category is to
neglect the variation of the 1/r term outside the brackets; it is set equal
to the reciprocal distance 1/R from the origin to the field point.

The variation of r over the aperture must be treated more carefully
in the phase term e=#7. We have in general

F= = 9+ — 0t 2 3)
If the field is concentrated in the region around the z-axis, a distance z
from the aperture will be reached at which for the points in the significant
region of the field z> |z — &, |y — nl. Equation (3) can then be
expanded as follows:

— 2 _ 2
T‘zz‘f‘(xzzg)+(y22n)+"‘=2+7‘a+"'. @)

Terms higher than the second order are neglected in the Fresnel field
approximation. An alternative form of expansion is obtained by express-
ing the coordinates of the field point in spherical coordinates:
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z = R sin 8 cos ¢ = Ro,
y = R sin 0 sin ¢ = RB, (5)
z = R cos 6.

Introducing these into Eq. (3), we obtain

£+ ' — (af + Bn)?

r~ R~ (af +6n) + SE

=n + Tty (6)

neglecting terms of order higher than the second. It is seen that this
assumes af/R < 1, Bn/R « 1. The expansion in the form of Eq. (4)
is suited for discussing the field over planes z = constant, whereas Eq. (6)
is best for discussing the field over a sphere of radius R about the origin.
Since both expansions actually assume that the field is concentrated in
the neighborhood of the z-axis, there is no significant difference between
the results obtained with one or the other. The diffraction integral for
the optical-Fresnel region thus becomes

) p—ikz X .
U, = 2%\ eR /A F(gmei(cos § + 1, - s) dt dn (7a)
or
U — J etn F(tm)e~*n(cos 6 + i, - s) dt d (7b
p = ﬁ T 4 ,m)e C z £ - )

Egs. (7a) and (7b) differ from the expressions for the Fresnel field
generally found in the literature in the presence of the term i, - s which
arises from a nonuniform phase distribution over the aperture. It is to
be noted that a phase distribution which represents wide deviations from
constant phase has associated with it a highly dispersed system of rays.
Under such conditions the assumption that the energy in the diffraction
field is concentrated around the z-axis is not valid and the approximations
entering into Egs. (4) and (6) may not be justified. If, however, the
phase distribution represents only small deviations from uniform phase,
the deviation of the rays from a system of parallel rays that are normal
to the aperture is small; the term i, - s may then be treated as constant
and equal to unity over the aperture.

The Fresnel region is characterized by the onset of diffusion of the
field and the wavefront outside the boundaries defined by the extension
of the rays through the aperture. The latter, however, still define the
propagation of the major portion of the field ; further details of the Fresnel
region will be developed in later sections.

With increasing distance from the aperture we finally pass into the
Fraunhofer or far-zone region of the field. This is the region with which
the secondary pattern is concerned. The far-zone approximations have
been discussed a number of times before. In the present connection it
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will be noted that the Fraunhofer region is differentiated from the
Fresnel region by further approximations that are made in the phase term
e—*r: the Fraunhofer field approximation neglects all terms in Fiq. (6)
above the first order in the aperture coordinates thereby considering in
Fig. 6:1 that the unit vector r; is

parallel to R;.. We have then

A

i p—ikR
Ur =g /AF(Em)(COS 0 M
4, - s)eikumbEwsonand) dEdy.  (8) Wi € f

Like all other far-zone fields en-
countered previously, the Fraun-

hofer field is a quasi-point source __Ej_,
field. The field distribution is the (@)
same over all spheres about the

origin; in a given direction 6, ¢ /\ l
the amplitude varies monotonically -

as 1/R and the intensity as 1/R2

Again if the phase error over the
aperture—deviations from constant
phase—are small, the i, - s term may
be replaced by unity. Equation
(8) then becomes ——

@
- ] . o F1G. 6-2,—Transition from Fresnel to
L p &2 MR (1 + cos 0)6 e Fraunhofer diffraction for a slit; (a) . . .

(f) depict the field distribution across planes

i o in the Fresnel region at increasing distances
/ F(&n)eitsn Bckeos gtmsing) J & fp. from the slit, showing progressive diffusion
A of the field into the shadow region; (g) is the
(8(1) Fraunhofer pattern. (Reproduced from .J.

C. Slater and N. H. Frank, Introduction to
Theoretical Physics, McGraw-Hill, New

It will be found that withnearly uni- 3 4% "0 2o o ihe quthors.)

form phase over the aperture, al-

most all of the energy in the field is contained in a small angular region
about the #-axis (corresponding to the geometrical property that the aper-
ture rays are all parallel to the z-axis). The variation of cos 8 over the im-
portant region of the secondary pattern may then be neglected, and we have
as our final approximation

U, ~ I i F(£,n) e inbiteon srnin®) d . (9)
AR n

Equation (9) is frequently used indiseriminately for both small and large
phase errors over the aperture. This will be done in the present chapter
and it should be remembered that for the latter cases the results have only
qualitative value.
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It was pointed out earlier that the boundaries of the three regions
of the field cannot be sharply defined. It is clear that the passage from
the Fresnel approximations to the Fraunhofer approximations is a gradual
one and is determined to a large extent by the criteria of the acceptable
error in the approximations that are made. In later sections we shall
attempt to define an inner boundary for the Fraunhofer region on prac-
tical considerations for special types of apertures. The gradual transi-
tion of the physical characteristics of the field from one region to the next
is illustrated very nicely in Fig. 6-2 taken from Slater and Frank.! The
figures pertain to a slit over which the field is uniform in amplitude and
phase. The near-zone pattern (Fig. 6-20) is seen to consist essentially
of the column of radiation propagated geometrically from the aperture.
With increasing distance from the aperture the field diffuses into the
shadow region, the system of parallel aperture rays finally passing over
into a cone of rays in the Fraunhofer region.

6.3. Fourier Integral Representation of the Fraunhofer Region.—The
final approximate expression that was obtained for the Fraunhofer region
[Eq. (9)] has an interesting interpretation. Let us define

k. = k sin 8 cos ¢, (10a)
ky = k sin 6 sin ¢; (100)
Eqg. (9) then becomes
Uy = 3 € *0(kaks) (11a)
with
glkeky) = /A F(&n)el®- 4k dE dy. (110)

Consider the plane z = 0. The aperture field can be regarded as the
function u(z,y) over the entire plane:

u(z,y) = F(z,y) inside 4,

ulz,y) =90 outside 4. (12)

The function u(z,y) is stepwise continuous over the entire plane and can,
therefore, be expressed as a Fourier expansion in the form of the Fourler
integral:

u(x,y) =(~27%/ / [ /u(é,n)eﬂ‘““”e""“”"’) @k dn dky dky, (13)

or
u@y) = o / f gl et dk dy, (13a)

Y Intreduciion to Theoretical Physics, MeGraw-111l, New York, 1933, Chap. 27.
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with

otk = 5 | / w(meittHn g dn,

_ 1 / / F(gm)ei-evien dg dy, (135)
27 A

It will be observed that except for the factor of 1/27 Eq. (13b) is identical
with Eq. (115).
Let us now examine Eq. (13a). If we define a vector k,

4 At
k: ke by ke = + (T—" — k- lf,;) ) (14)
the function e/ satisfies the wave equation and represents a plane wave
of unit amplitude traveling in the direction of the vector k. Over the
plane z = 0, the wave produces a distribution

e—ﬂ(-r] = eg~iltkeathy) (15)
z=0

The integrand of Eq. (13a) is thus the distribution over the plane z = 0
produced by a plane wave in the direction k with an amplitude g(k.,k,),
and the arbitrary distribution w(z,y) is given by Eq. (13a) as a super-
position of plane waves traveling in all directions. Referring to Eq. (11a)
it is then seen that the amplitude of the field in the Fraunhofer region
in the direction defined by %. and %, [Eqs. (10)] is the amplitude of the
plane wave component in that direction which enters into the synthesis
of the arbitrary distribution over the aperture.

Equations (13a) and (13b) are referred to as the pair of mates of a
Fourier transform. If the function g(k,k,) is given, that is, the Fraun-
hofer field is preseribed completely both as regards to amplitude and
phase, Eq. (13a) serves to determine the field distribution over the plane
z = 0 that is required to produce the prescribed secondary field pattern.
In practice the use of the transform is limited by the fact that the second-
ary pattern is prescribed only in power; the phase of g(k.,k,) can be assigned
at will, and therefore the aperture distribution is not determined uniquely.
Two different choices of the phase of g(k,k,) lead to two different
aperture fields, one of which it may be physically possible to produce,
whereas the other may not be realizable physieally at all.

6.4. General Features of the Secondary Pattern.—The results of
later sections will be anticipated here with a general summary of the
relation between the secondary pattern and the aperture field. Consid-
ering Eq. (8) or (9) again from the point of view of the superposition of
contributions from each eclement of surface on the aperture, the field
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at a given point is visualized as the resultant of a system of vector
elements. The magnitude of the vector from the element of surface
at a point £, 4 is [F(&,7)| d§ dy; the angle that it makes with the element
from the origin (which is taken as a reference) is determined by the
intrinsic phase difference between them over the aperture and the phase
difference arising from different path lengths to the field point. The
absolute maximum value that the resultant of the system of vectors can
have is equal to the sum of their magnitudes, obtained when the contribu-
tions are all in phase. If the phase over the aperture is constant, the
absolute maximum is attained in the direction normal to the aperture, for
in that direction the path length is the same from all aperture points
to the field point. Since the path-length phase factor

k sin 8(f cos ¢ + n sin ¢)

is a linear function of the coordinates on the aperture, the absolute
maximum cannot be obtained in any direction in the case of arbitrary
phase distributions over the aperture unless the distribution is a linear
function of the aperture coordinates. In general, however, there will
always exist directions in space for which the path phase factor makes the
optimum compensation for the aperture phase differences between the
elements as compared with neighboring directions. The secondary
pattern thus has series of maxima and minima. If the phase distribution
does not deviate too widely from constant phase over the aperture, there
will in general be one maximum that is considerably greater in value
than the others. The portion of the secondary pattern possessing this
maximum and contained within the angular region bounded by the
directions of the adjacent minima is known as the main lobe or sometimes
as the main beam. The subsidiary maxima are referred to as side lobes.
The line through the origin and the peak of the main bedam is referred to
as the beam axis.

From the practical point of view the pattern is specified by certain
beam characteristics: the direction of the peak intensity; the gain, half-
power, and tenth-power widths of the main lobe; and the magnitudes and
positions of the side lobes. To define the beam widths consider any
plane containing the axis of the beam; the half-power width © in that
plane is the angular distance between the two directions about the axis
in which the power radiated per unit solid angle is one-half the peak
value; the tenth-power width ©(s5) is defined correspondingly. If the
aperture is symmetrical in shape and the field distribution over the
aperture has certain symmetry elements in common with the aperture,
the main lobe will reflect the symmetry of the field distribution. The
symmetry elements are generally planes of symmetry; these are referred
to as the prineipal planes of the pattern.
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Gain.—Let us consider first the relation between the gain and the
aperture field. The power radiated per unit solid angle in a given direc-
tion is [¢f. Eq. (5:77a)]

P00 = 5(5) mIvL (16)

The total power P, radiated by the aperture is equal to the power flow
across the aperture, which is the integral of the normal component of the
Poynting vector. The total power is then

1{e\* .
Po= 3 () [ Pemis 9 azan an
2 4
and the gain function in the direction (6,¢) is
x| [P eost 4 sersnersane o d gl
A2 ;
/A [F (&) 1%, dE dy

The more exact form [Eq. (8)] has been used in Eq. (18) for the field
intensity U, in the Fraunhofer region.

It was seen that if the phase is constant over the aperture, the second-
ary pattern attains the absolute maximum in the direction of the z-axis,
6 = 0. The aperture rays are parallel to the z-axis so that s, = 1; the
maximum value of the gain function, or simply the gain, is, therefore,

G(6,¢ (18)

_an |[ P dean

- , (19)
M [P dgdn

A

A case of especial interest is that of uniform illumination over the aper-

ture. F(&4) is a constant; from Eq. (19) the gain G for that case is
found to be

4rA

Go = N (20)

(lonsider now any other intensity distribution. Making use of the

Schwartz inequality,

l/fgdédn

where f and ¢ are any two functions; by taking [ = F(¢) and ¢ = 1,
we find

2
< /fzdidn/d“’dédm (21

2
I/f’(é,n) didn < A / [F(&m)1* dt dn. (22)
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Hence,

Gy < 4:—;4 (23)
Thus, the uniform field distribution over the aperture gives the highest
gain of all constant-phase distributions over the aperture. The ratio
G = Gx/Go, known as the gain factor, may be regarded as the efficiency
of the aperture in concentrating the available energy into the peak
intensity of the beam.

The proof given above that uniform illumination gives maximum gain
is valid strictly for constant-phase distributions only, since Eq. (19)
applies only to such distributions. A proof for the more general case
must be based on Eq. (18); so far, to the author’s knowledge, no such
proof has been established. If the phase distribution represents a small
deviation from constant phase, however, and is such that the peak
intensity lies in the direction § = 0, it is certain that the gain is less than
that of the uniform field. The value of the peak intensity is more
sensitive to the interference effects between the vector elements from
the aperture than is the value of the total power to the slight deviations
of the aperture rays from the normal to the latter. The effect of such
phase errors is, therefore, a reduction in the aperture efficiency.

The aperture efficiency can be given more pictorial significance by
considering the performance of the antenna system on reception. Let
us suppose for the moment that the primary feed is designed toilluminate
the reflector or the lens but to have no radiation in other directions. In
that case the secondary pattern arises entirely from the aperture, and the
gain of the antenna is equal to the aperture gain Gy. If now a plane
wave is incident on a matched antenna along the beam axis, by Eq.
(2-80), the absorption cross section presented by the antenna to the plane
wave is

)\2

M

From Eg. (20), it is then seen that if the aperture is uniformly illuminated,

the absorption cross section is equal to the physical cross section presented

by the antenna to the incident wave. In the case of any other type of
constant-phase illumination we have

G

4, = en A. (25)

The effective area is reduced by the gain factor. The aperture efficiency

may thus be regarded as measuring the effective aperture area presented
by the antenna to the incident wave.

In the practical case the primary feed radiates in directions other

than that required to illuminate the optical device. The energy not
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intercepted by the latter is referred to as the spill-over energy. Except
for secondary effects the total power in the secondary pattern can be
considered as consisting additively of the power in the Fraunhofer region
of the aperture diffraction field and the spill-over energy of the feed.
The over-all gain of the antenna must be referred to the total energy
radiated in all directions. If P, is the peak intensity in the secondary
pattern and P is the total power radiated by the feed, the over-all gain is

_ AP,

¢="p

(26)
If the aperture intercepts a fraction « of the total power from the feed,
the power radiated by the aperture is P, = aP, whence

47P,,

G=a P

= ol . 27)

Taking again the uniformly illuminated aperture with an idealized feed
as the reference, the over-all efficiency of the system is

(28)

The efficiency of the antenna is thus seen to be a product of two factors:
(1) the fraction of the total power intercepted by the optical device and
(2) the efficiency of the aperture in concentrating the available energy
into the peak of the main lobe.

Beamwidths and Side Lobes.—The beamwidth and side-lobe character-
istics are, of course, intimately related to the dependence of gain on
the aperture field distributions. The following remarks are based on the
results of the investigation of a number of special cases. Taking the
constant-phase distribution first, we have seen that maximum gain is
realized with uniform illumination. If the illumination over the aperture
is modified so that the intensity is peaked in the central area of the
aperture and tapered down in magnitude toward the aperture boundary,
the diminution in gain is accompanied by an increase in beamwidth and a
decrease in side-lobe intensity relative to the peak intensity of the main
lobe. The prominence of the side lobes can be traced to the discontinuity
at the edge of the aperture, considering the field distribution with regard
to the plane z = 0 as a whole.

The effect of phase errors over the aperture, with the types of aperture
fields that are commonly encountered, is in general to reduce the gain
and broaden the main lobe. Side-lobe levels may be either raised or
depressed depending on both the type of phase distortion and the inten-
sity distribution over the aperture. Quite generally the sharpness of the
minima is reduced and their levels are raised. Severe phase errors over
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the aperture may result in splitting of the main lobe and enhancement
of the side lobes to such an extent that it is no longer possible to identify
a major lobe.

6.5. The Rectangular Aperture.—A number of special problems
associated with rectangular and circular apertures will be investigated
to illustrate the general ideas formulated in the preceding section. The
rectangular aperture will be treated first. Let the dimensions of the
aperture be designated by a and b, the orientation of the aperiure in
the zy-plane being shown in Fig. 6-3. The secondary pattern depends
only on the relative distribution over the aperture, and in the following
discussion it will be assumed that the distribution F(£,7) is normalized
to have a maximum value of unity. For the present purposes the com-
pletely simplified expression for the Fraunhofer region [Eq. (9)] will
be used; in so far as the pattern is concerned we need consider only the
factor

a/2 b/2
0(0,9) = f / F(&,n)etkoin 0t con dtnsin®) Jf . (29)
—-a/2 J —b/2

Uniform Amplitude and Phase.—F (&) = 1 for a uniformly illumi-
nated aperture; the integral of Eq. (29) is easily evaluated, and one
finds that the secondary amplitude pattern is

sin <L;l sin # cos ¢>) sin <%b sin 8 sin ¢
g09) —A|——— LA 30
- i . .
—}\—smﬂcos¢ Ysmz‘)smq&
The patterns in the principal planes (the zz- and yz-planes) are of par-
ticular interest. FYor the zz-plane ¢ = 0, Eq. (30) simplifies to

sin (Z")\ﬂ sin 0>
g0,0) = 4- 2L

I)?sine

C2Y)

For the yz-plane ¢ = 7/2; the pattern in this plane is likewise given
by Eq. (31) with a replaced by b. Both patterns are of the same form,
sin u/u, but are scaled in the angle 8 according to the aperture dimensions
in the respective planes. The secondary power pattern, normalized to
a peak value of unity, is plotted in Fig. 6-3 on a logarithmic scale as a

function of the reduced variable u = (Z) (w/\) sin . The minima in

this case are equal to zero and occur at the points u, = nw, n = *1,
42, - -+ . The full widths of the main lobe measured from null point
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Fig. 6:3.—Secondary pattern of a uniformly illuminated rectangular aperture.

to null point on either side of the axis are

zz-plane: 2 sin~! (2) =~ %,

. . A 2\
- M Y e
yz-plane: 2 sin (b) b

The half-power point on the main lobe is very closely at © = 1.39; hence
the half widths in the principal planes are

2 sin—! <1'39)‘> ~ 0.88 Z‘, (32a)
Ta a

2 sin-" (%‘”‘) ~ 088 ) (320)

xz-plane: ©

yz-plane: ©
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These illustrate two fundamental points: (1) In a plane of symmetry the
width of the beam is determined by the aperture dimension in that plane,
and (2) the diffraction pattern is confined to a smaller angular region the
larger the dimensions of the aperture as measured in wavelengths.

The side lobes (peaks) are located at the points u, that satisfy the
relation v = tan u. The first of these comes at u; = 4.51; the second at
us = 7.73. The side-lobe intensities relative to the peak intensities are
readily found to be 1/(1 + u2), which, from the values of u; and u., is
seen to be very nearly equal to 1/u%. Referring to the amplitude
expression [Eq. (31)], it is seen that g(8) is positive over the entire main
lobe, changing sign in passing through the first zero, returning to a
positive value on passing through the second zero, and so on. The
odd-numbered side lobes are, therefore, out of phase with the main lobe,
and the even-numbered ones are in phase. Such phase reversals are
characteristic of all power patterns in which the minima are equal to zero.

Separable Aperture-field Distributions.—A common type of aperture-
field distribution is that which arises with a cylindrical reflector or lens
and a line source (¢f. Sec. 5:9) where the distribution over the aperture is
separable into a product of two functions:

F(&m) = Fi(H)F:(n). (33)

Substituting into Eq. (29), we find that the integral is likewise separable:
a/2 b/2

g(6,¢) = / , Fr(E)eittoinbomt ¢ / Fa(n)ekrombins gn  (34)
—a/2 —b/2

If we consider again the principal plane patterns, we see that the pattern
in a given plane is determined entirely by the field distribution along the
corresponding aspect of the aperture. The principal plane patterns are

b/2 a/2
[ / Pa(n) dn] f Fugertmodg;  (35a)
—b/2 —a/2

a/2 b/2
U e 1“)‘”” Falpeirsetdn. (355)

—a

zz-plane: g(6)

yz-plane: g(6)
The effects of tapered illumination and phase errors on the principal
plane patterns can thus be studied as two-dimensional problems, provid-
ing, of course, that the aperture field is separable in the form of Eq. (33)
both in amplitude and in phase.

6.6. Two-dimensional Problems.—The remaining analysis of the
secondary pattern of a rectangular aperture will be restricted to a separ-
able distribution in which the field is uniform along, say, the y-direction;
that is, Fa(9) = 1. The pattern in the plane x = 0 is just the sin u/u
pattern,
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. (rb . )

sin Y sin 8
A

and we are left with only the pattern in the plane y = 0,

a/2
g9(6) = /_a/zFl(E)e""“"’ dg, (36)

to consider. Multiplicative constants are being ignored in Eq. (36).
It is convenient to introduce new variables
2 Ta
x=—a§; u=—)\—s1n0; @37
the function F,(£) goes over into a function f(z), and ¢(8) becomes a
function of u which to avoid difficulties of notation will be designated

as g(u). Equation (36) then becomes

1
o) =3 f _ J@e da. (38)

It is seen at once that if the same relative distribution, for example,
flz) =[1 — (482/a?)] = (1 — x?), is produced over two apertures of
different size, the two apertures will produce the same secondary patterns
when regarded as functions of u. The side-lobe intensities relative to the
peak intensity will be the same in the two cases. However, since
sin § = \u/ra, the angular distributions will differ; the diffraction field
of the larger aperture will be contained in a smaller angular region than
that of the smaller aperture, and in particular the main lobe will have a
smaller beamwidth. The larger aperture will yield higher gain, cor-
responding to the fact that the pattern is confined to a smaller angular
region in space. This can be seen directly from the expression for the
gain [Eq. (19)]. For the present we shall consider only constant-phase
distributions. Equation (19) reduces to

a/2 2
Fi&d
GM = /‘:/az/;li (39(1)
o F)) d

for the separable type of distribution. On introducing the variable z,
this becomes

| @ o]
ST

showing explicitly that the gain is proportional to the area of the aperture.

Gu (39b)
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The distribution over the aperture can be characterized completely
by its moments um,

pm = / D@ de m=0,1,2 0. (40)

These are very useful in relating the properties of the secondary vattern
to those of the aperture distribution.! Expanding the exponential in
Eq. (38) we obtain

o =3 ¥ U [ arperas (a1)
or m=0
_ o N ()
o) = 42 Dkny (42)
m=0

The power pattern p(u) = |g{u)|? is then

Kol pe ol ( Ba _ Hifg ;u%) ]
1 - -~ T 73 A 9 4 - . a - 0
plu) = ( 2 ) [ (Po #%) ot 1220 34k 4u? u
(43)

It is seen from Eq. (42) that an asymmetrical distribution over the aper-
ture results in a g(w) that is complex so that the equiphase surfaces in
the Fraunhofer region are not spheres centered at the origin. If, how-
ever, the aperture distribution is symmetrical, that is, f(z) is an even
function, its odd moments vanish and g(u) is real:

g(u) = i;i‘(l - 2+4,#0 wh— - ) (44)

For the latter case, convenient expressions for the beamwidth can be
obtained by simple approximations. In the neighborhood of the beam
axis, we shall approximate the pattern by neglecting all terms in Eq. (44)
beyond the second:

glu) = Eﬂ <1 - T;‘:'ﬁ uz)- (45)

The half-power point in the power pattern corresponds to point # at
which the amplitude has “allen to 1/4/2 of its peak value. Hence

a="" sm [(%xf)“"]

tR. C. Spencer, '‘Fourier Integral Methods of Pattern Analysis,” RL Report No.
762-1, Jan. 21, 1946.
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and the half-power width is
@ ~ 2 sin—! [[(2 ) :‘T"] A]
2

Ta

or

O ~ 0.48 (“_) A (46)
B2 a

The effect of tapering the illumination down toward the edges of the
aperture can be seen directly from this expression. Since the moment
e is the average of the distribution function weighted by the factor z2,
peaking the function in the neighborhood of x = 0 decreases the second
moment more rapidly than g, which is the average of the function itself.
The effect of such tapering is to increase the ratio wo/w: and hence to
increase the beamwidth.

A more accurate expression for the beamwidth has been obtained,!
which can be used to construct the main lobe down to its tenth-power
width. The results are applicable only to the cases of symmetrical
aperture distributions. For the latter the expansion of the power
pattern [Eq. (43)] reduces to

N (R

The factor (ua/2)? has been dropped to normalize the pattern to a
peak value of unity. The power drop in the pattern relative to the peak
expressed in napiers is N = — In p(v). Considering Eq. (47) to be of
the form 1 — &, the expansion for In (1 — 2) is used to obtain

7o B2 1 ’L% _ ﬂ) 1
N v + i (pg e A (48)
Solving for w, we then get
u = AN*(1 — BN), (49)
where
- /#C>1/2. _1 ( yom)

Since In p(u) = 2.303 iog p(v), the corresponding expression in terms of
the decibel drop D is
u = A'D"*(1 — B'D), (50)
where
4’ = 1.5184; B’ = 2.303B. (50a)

L R. C. Spencer, op. cit.
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The full angular width of the main lobe at a given decibel level is, there-
fore,
A'D%

L

85 = 2 sin~! [ (1 — B'D) 2] (51)

The aperture-field—secondary-pattern relationships are further illus-
trated by the results in Table 6-1, in which the major secondary-pattern
characteristics are given for several typical aperture distributions. The
integration of Eq. (38) is easy to perform for each of these distributions,
and the details need not be given here. The effect of reducing the
discontinuity at the edge of the aperture is shown by the series of para-
bolic distributions 1 — (1 — A)z2. It is seen that the gain decreases
rapidly as A getsin the neighborhood of zero; and the beamwidth increases.
The series cos™ (xz/2) shows the effect of a higher-order taper of illumina-
tion. All members of the series (n = 1, 2, . . .) reduce to zero at the
edge of the aperture, but in addition the nth member has n — 1 deriva-
tives equal to zero at the edge of the aperture. The gain decreases and
the beamwidth increases with increasing n; the side lobes appear at
increasingly larger angles and with reduced intensity relative to the main
lobe.

6.7. Phase-error Effects.—A phase-error distribution may arise over
the aperture of an optical system from various causes such as a displace-
ment of the primary feed from the focus or distortion of the reflector or
lens, or it may be caused by phase error in the field of the primary feed;
that is, the wavefront is not spherical or cylindrical as is presupposed in
the design of the optical system.

It will again be assumed in the following that the aperture field is
separable, the field being uniform in the y-direction and the phase error
existing in the z-direction only. If ¥ (2¢/a) = ¥(z) denotes the phase-
error distribution, the expression for the secondary pattern [Eq. (38)]
becomes

o) = 3 /_llf(x)e"["’““’”dz, (52)

where f(z) now denotes the amplitude of the aperture field. As in the
preceding section, f(z) is assumed to be normalized to unity.

The discussion will be limited to a consideration of special forms of
¥(z), specifically to the following:!

Linear error: ¥(z) = Bz.
Quadratic error: ¥(z) = gz2.
Cubic error: ¥(z) = Bx.3
! The results presented here are taken largely from R. C. Spencer and P. M.

Austin, ‘“Tables and Methods of Calculation for Line Sources,”” RL Report No. 762-2,
Mar. 30, 1946.




TABLE 6:1.—SECONDARY PATTERN CHAR: CTERISTICS PRODUCED BY VARIOUS TYPES OF
APERTURE DISTRIBUTIONS.

1
flz) =1 z| > 1 ) =sinu
=0 |z] > 1 9(u) u
3 +1
Full width Angular position Intensity of first
Gain factor Ga| at half power guiar po side lobe; db below
. 8 of first zero N .
@, radians peak intensity
1 0.882 A 13.2
a a
fl@) =1— (1 —4)2 [z <1
] . sin u Sin u
/\j glu) —a[——u (I_A)duz(—u ):I,
L o(a) = @+ oy
o1 — 30 —3) + 30 = &7
A=1.0 1 0.88 " 2 13.2
a a
0.8 0.994 0.922 1.062 15.8
0.5 0.970 0.972 1.143 17.1
0.0 0.833 1.152 1.432 20.6
| a a
flx) = cos"%t lz] <1
1
g(u) = —,,__1 Tt CO8 u n, odd;
2
. [(2k F 1) —]
n! sin u
glu) = a— . n, even
Fl 2
A it [ e - 4]
k=1 ks
c _1[2-4-6---@—1) :
Ll [ o S
2.4.6-.7 2n
(1 3.5 .. 2n—1)"’°dd
_ 235 - (n—1)
S-=lza6
[(n + 2)(n + 4) 2n n. even
n+1n+3) - 2n — 1 ’
n=0 1 0.882 A 13.2
a a
1 0.810 1.22 1.52 23
a a
2 0.667 1.452 22 32
a a
3 0.575 1.662 2.52 40
a a
4 0 515 1.032 32 48
a a
J@) =1z, |z <1
.ou\?
sin =
2
‘A’, g(u) = 4a u >
2
‘ 0.75 1.282 2} 26.4
a a
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Léinear Error.—Inserting the appropriate expression for ¥(z) into
Eq. (52) we obtain

1
o) =5 /_lf(z)e““*‘”z dz. (53)

It is directly evident that this is of the same form as Fq. (38) with »
replaced by (x — 8). The pattern is, therefore, the same as that of the
constant-phase distribution but displaced by an amount 8. The peak
intensity comes at u = @, that is, in the direction

6y = sin~! LY (54)
ar

The pattern is thus the secondary pattern of a constant-phase aperture
field rotated through the angle 8,. The physical basis for this is very
simple. On expressing the phase distribution in terms of the original
aperture variable ¢ = az/2 and making use of Eq. (6:107), it will be
found that the aperture rays form a system of parallel rays traveling in
the direction 6, given by Eq. (54). The aperture field can be considered
to have arisen from a plane wave incident on the aperture in the direction
0(]-

If the aperture is projected onto a plane normal to the aperture rays,
a new aperture is obtained over which the field distribution has constant
phase. The projected aperture dimension o’ is

a’ = a cos b,

and therefore the gain G, in the case of linear-phase error will be related
to the gain Gy of the constant-phase distribution by

Gy = Gy cos bo. (55)
This can be verified by a direct calculation on the basis of Eq. (18).

Quadratic Error.—The secondary amplitude pattern for this case is

1
gw) = 3 / f@)eiuse da. (56)
-1
The evaluation of such integrals is generally laborious. For small

phase errors, however, a convenient approximate method can be used.
Expanding the exponential factor e=##**, we obtain

o) = Z S x”'"f(z)ei“’ dz. 57)

The integrals of Eq. (567) can be expressed as derivatives of the pattern
go(u) obtained in the absence of phase error (8 = 0), for
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&% /_1)’(90)6’“ dr = (j)* /_1 o+f(z)e’ da. (58)
Hence
glu) = % z (])1:‘!3". % [go(w)]. (59)
m=0

Retaining only the first two terms, we have
g(w) =~ 5 [go(w) + B0y ()] (60)

If the amplitude distribution F(z) is symmetrical, go(u) is real; the power
pattern p(u) is then

p(w) ~ % {lge)]* + Blg% (T (61)

The effect of quadratic phase errors is illustrated in Fig. 6-4 for two
types of illumination: uniform amplitude, f(z) = 1, and tapered illumina-
tion, f(x) = cos? (wx/2). In both cases 8 = x/2, representing a path
length deviation of A/4 from constant phase at the edges of the aperture.
The value of 3 is ratner large for the use of Eq. (61) to be valid, but the
qualitative features are not seriously affected by the errors involved.
It is seen that the peak intensity still appears in the direction 8 = 0.
Since the phase error is symmetrical with respect to the center of the
aperture, the secondary pattern will always be symmetrical about the
6 = 0 axis. However, it will be found that when 8 gets sufficiently large
the main lobe becomes bifurcated, with maxima appearing on either side
of the & = 0 axis. The general effect of the phase error is to raise both
the side-lobe level and the level of the minima. In the case of the tapered
illumination these effects are so large that the first side lobe is almost
completely absorbed into an extremely broadened main lobe. The effect
of phase error on gain is exemplified by Fig. 6-5 which shows the gain
relative to the constant-phase distribution for a uniformly illuminated
aperture. The phase error is expressed in terms of path length deviation
from constant phase. The loss in gain that can be tolerated in practice
depends, of course, on the operational requirements on the antenna and
the associated system.

Cubic Phase Errors—The cubic phase errors can be treated by the
same approximation technique as was employed in Eq. (60). The
corresponding expression for the amplitude pattern is

g(w) = § lgo(w) + 897" (W)- (62)
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In the case of a symmetrical distribution f(z) over the aperture go(u) is
real and the power pattern is

p) = % l9o() + B8 (W] (63)

If f(z) is an even function, go(u) is likewise even and hence gy’ (u) is odd.
In the neighborhood of u = 0 g;”(u) is positive for u > 0 and negative
for u < 0. It is then directly evident from the form of p(u) that the
peak will occur at some value v > 0. The effect of the phase error is to

-~
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- ~8=0
5—
A\
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F1a. 6:4.—Effect of quadratic phase error; maximum phase error of =/2 at the edge of the
aperture: (¢) constant amplitude; (b) tapered illumination, f(x) = cos? (wrz/2).

tilt the beam as in the case of a linear error. In addition, however, the
main lobe becomes asymmetrical and the side lobes increase on the side
of the main lobe nearer # = 0 and decrease on the other side of the main
lobe. The shift in the main lobe is also accompanied by a loss in gain.

Aperture Blocking.—The problem of an obstacle in the aperture is of
interest in connection with the use of reflectors, for the primary feed is
located in the path of the reflected rays, thus blocking out a portion of the
aperture. The obstacle may be considered as a particular type of phase
error. Assuming that over the exposed area the presence of the obstacle
does not alter the distribution f(z) which would exist in its absence, the
obstacle can be regarded as producing a field 180° out of phase with f(z)
over the area that it covers.
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Let us consider the particular case! illustrated in Fig. 6:6a of an
obstacle located in the center of the aperture. The width w of the
obstacle will be taken to be small compared with the total aperture width
a. To express the pattern in

terms of the variables of Eq. (37), =3 S o
we define the normalized width % AN
26 = w/a. Equation (38) for the
pattern then becomes \
s 80 N 1
g(u) = g [/ flx)eiv= dx N
_11 5 70 \\ ¥
+ /Hf(r)e"“’ dz], CONNI v 12 3
AY
which can be rewritten as \
a 1 ' 50 —— 3
otw) = § [ /_j(x)em dx \
+3 40 4
— f(z)er= dle. (65)
é

0 0.1 0.2 03 0.4 0.5
Phase error in wavelength = 8%nr

It is seen eXphCItly that the ob- Frc. 6-5.—Loss of gain as a function ot
stacle can be regarded as an out- quadratic phase error over a uniformly
of-phase field superimposed on the illuminated aperture.

original distribution. Over the region of the obstacle f(z) may be con-
sidered constant and equal to unity; hence

() = [ / f@)ere dz — 28 S“z (5’;5)] (66)

Since the width of the obstacle is small compared with the aperture width,
the pattern produced by the former will be very broad compared with
that of the aperture. For qualitative results the obstacle pattern may be
regarded as constant over the region of the main lobe and near in side
lobes of the aperture pattern. The effect of the obstacle is then simply
that illustrated in Fig. 6-6b of subtracting a constant 28 from the original

amplitude pattern. If the peak amplitude of the original pattern is
1

ao = f(x) dx
-1

and the amplitude of the first side lobe is pa,, the intensity of the first
side lobe relative to the peak in the modified pattern is

_ 2

00—25 Qo
p=o = gy (67)

26 26

pas + p+;

)

' R. C. Spencer, ‘“Fourier Integral Methods of Pattern Analysis,”” RL Report No.
761-1, Jan. 21, 1946.
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The effect of the obstacle is to increase the magnitude of the first side
lobe.

6.8. The Circular Aperture.—The fundamental considerations and
results developed for the rectangular aperture pertaining to the relation
between the aperture field and the secondary pattern apply in general
to the circular aperture, but the quantitative details differ because of the
difference in aperture geometry. In treating circular aperture problems

N~ " @
f?")
=1
| [ 1
-1 —-28~ 1 a . I_Zﬁu
(@

F1c. 6:6.—The effect of aperture blocking: (2) modified aperture distribution; () second-
ary pattern.
it is usually convenient to use polar coordinates p, ¢’ (Fig. 6-7}, which are
related to £, 7 by
£ = pecos ¢, n = psin ¢ (68)

Denoting the aperture field distribution by F(p,¢’), the expression for
the secondary pattern [{Eq. (9)] becomes

2r a
o0 = / / F(p, 4 )etsmnsem 685 dp dg), (69)
o Jo
where a is the radius of the aperture. Introducing the variables
- e =™
r=g u X sin @ N Sin a, (70)

the function F(p,¢’) goes over into a function f(r,¢’), and ¢(8,¢) goes
over into a new function which we shall denote simply as g(u,¢). It will
be assumed, as before, that f(r,¢) is normalized to unity. The pattern
is then

2r 1
g(u,¢) = a? / / fr, ¢ )eivrcon 6=8"r dr d ', (71)
0 0
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It is observed that as in the case of the rectangular aperture, all apertures
having the same relative distributions produce the same secondary
patterns regarded as functions of u. The angular distribution in ¢ is
the same for all, reflecting the symmetry of the distribution over the
aperture; as seen from Eq. (70), the distribution in # again scales by the
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F1a. 6-7.—Secondary pattern from s uni‘ormly illuminated ecircular aperture.

factor A/D; the larger the diameter the smaller is the angular spread
of the pattern about the (6 = 0)-axis.

Uniform Phase and Amplitude—Setting f(r,¢’) = 1 in Eq. (71) and
carrying out the integration over ¢’, we obtain

g(u) = 2ra? Al rdo(ur) dr, (72)
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where J(ur) is the Bessel function of order zero.! The integration over
 leads to

o(u) = 2rar 1102, (73)

The power pattern p(u) normalized to unity is shown in Fig. 6-7, plotted
on a logarithmic scale, as a function of u. The half width of the main
lobe is

® = 2 sin~! (0.51 l) ~ 102, (74)

D D

and the first side lobe is 17.5 db down from the peak. These are to be
compared with the half width of 0.88\/a and the 14-db side lobe of the
secondary pattern of a rectangular aperture.

Tapered Illumination.—The effect of tapering the illumination down
toward the edge is the same as with a rectangular aperture: reduction
in gain, increase in beamwidth, and reduction in side lobes. The effects
can be illustrated by considering the series of aperture field distributions

1 —=7%?, p=12 ---.2 The secondary patterns are given by
1
go(u) = 21ra2/ (1 — r52Jo(ur)r dr (75)
)
or
, 27l 2
go(w) = ma? pu::—ll(u) = p"l'i 1 Apy1(w). (75a)

The functions A, are available in tabular form.* The major character-
istics of the patterns are summarized in Table 6-2 and will not be dis-
cussed further.

The circular symmetry of the secondary pattern is associated of
course with the corresponding symmetry of the field distribution. Tt is
of interest to consider a distribution of the form

flr,¢") =1 — r?cos? ¢’ (76)

which is tapered in the plane ¢’ = 0 and uniform in the plane ¢’ = r/2.
Substituting Eq. (76) into Eq. (71), we obtain

2n 1
g(u,¢) = 2ra? ['ﬂiul - / / 72 cos? ¢’eivrcor (6= dr d¢’]~ (77)
o Jo

' G. N. Watson, Theory of Bessel Functions, 2d ed., Macmillan, New York, 1945.

2 R. C. Spencer, ‘“ Paraboloid Diffraction Patterns from the Standpoint of Physical
Optics,”” RL Report T-7, Oct. 21, 1942,

8 E. Jahnke and F. Emde, Tables of Functions, reprint by Dover Publications,
New York, 1943.
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TaBLE 6-2.—SECONDARY PATTERN CHARACTERISTICS PRODUCED BY A DISTRIBUTION
(1 — 7%)? ovEr A CIRCULAR APERTURE

in fact 0, half-power 9, position gg%;:jf loebi’
p 6, gain factor width of first zero . pea
intensity

A . 1.22)
— -1

0 1.00 1.02 D sin D 17.6
A . 1.63A

1 0.75 1.27 5 s 24.6
A . 2.03n
—_ s~ 1

2 0.56 1.47 D sin D 30.6
A . 2.42)
_ -1

3 0.44 1.65 B sin D
N . 2,79\
— -1 Y

4 0.36 1.81 D sin D

This can be evaluated by means of the expansion!
eiur con (3—4") = E (]) nJﬂ (ur)eJ'n(¢~¢')_ (78)
n=—

Of particular interest are the patterns in the planes of symmetry, ¢ = 0
and ¢ = 7/2. We find that these are

¢ =0,
gw) = 2ra? {J—’f}) - % /01 r2Jo(ur) — Ja(un)lr dr}
= 3"1“-2 Aa(u). (79)
™
¢ = QJ
g(u) = 2ma? {Jl% — % ﬁl rJo(ur) 4 Jo(ur)lr er
= a? [Amu) - #] (80)

The two patterns are shown in Fig. 6:8. Tt is seen that the beamwidth
is greater in the plane ¢ = 0 than in the plane ¢ = #/2, corresponding
to the fact that in the first principal plane the illumination over the
aperture is tapered whereas in the second the aperture illumination is
uniform.

! Watson, op. cit., Sec. 2:22.
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6-9. The Field on the Axis in the Fresnel Region.—An important
consideration in making measurements of secondary patterns is the
minimum distance from the aperture at which the field may be regarded
as being in the Fraunhofer region. To aid in arriving at a criterion it

l'ob\ 1 I

8 \ ‘ ]
N {

6 "\
N——+
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\:
v

— i |

|
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F1G. 6:8.—Principal plane patterns for the aperture distribution f(r,¢") = 1 — r2 cos? ¢'.

will be well to discuss briefly the field on the axis in the Fresnel region
and the transition to the Fraunhofer region. The aperture field will be
taken to be uniform in amplitude and phase.

The method of Fresnel zones used extensively in opties affords a
simple physical basis for understanding the effects that are observed
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in the Fresnel region. In Fig. 6-9 let the point P at distance R on the
axis be the field point under consideration. Taking the point P as a
center, we shall describe a family of spheres of radii B + A/2, R + 2(A/2)

Their intersections with the aperture divide the latter into annu-
lar regions; these are known as the Fresnel zones. The zones will be
numbered as shown in the figure. Taking any two adjacent zones n and
n + 1, it is seen from the method of construction that for every contribu-
tion to the field at P arising from an element of surface in the first zone

Fi6. 6:9.—Division of the aperture into Fresnel zones.

there is a contribution from an element in the second zone 180° out of
phase therewith, and the integrated contributions of the two zones are,
therefore, very nearly 180° out of phase with one another. Denoting
the magnitude of the contribution of the nth zone by S., the effect of the
entire aperture is

S=S1—Sz+Sa—S4+_"‘. (81)

The contributions S. decrease slowly with increasing n; the resultant
effect of pairs of adjacent zones is therefore virtually equal to zero. A
careful analysis! shows that if the aperture contains a full number of
zones N, the resultant is very closely equal to

S =4(8: + 8w (82)
depending upon whether N is odd or even. As R increases, N decreases
and S fluctuates between the values

S = §(S1 — 8») = 0 for N even (83a)
and
S = 3(S; + Syv) = 8, for N odd. (83b)

The amplitude of the field along the axis, therefore, passes through
maxima and minima, the maxima coming at the points that subtend an
odd number of Fresnel zones, the minima at the points subtending an

! See, for example, M. Born, Optik, p. 145, reprint by ¥dwards Bros., Ann Arbor,
Mich., 1943.
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even number. There will be no further fluctuations beyond the point
on the axis for which the entire aperture consists of a single Fresnel zone;
this distance is

D2 — xz D2
T Ta Tw
D being the diameter of the aperture. However, the distance R, cannot
be taken as the beginning point of the Fraunhofer region, for at that point
the contribution from the edge of the aperture is still 180° out of phase
with that from the center; whereas the caleulation of the Fraunhofer

D Ll g |

Fra. 6-10. ——The trensition region between the Fresnel and the Fraunhofer regions: (a)
R = R: = D2/4N; (b) R == D?2/2\; (¢) R = D*/\; (@) R =

region, on axis, assumes that the path differences between points on the
aperture to the field point are negligible. Considering the aperture to be
subdivided into small annular zones and resolving the resultant effect
of the aperture into the superposition of the vector elements of these
zones, one finds that the vector diagrams take the forms shown in Fig. 6:10
for distances greater than R;.! The slope angle of the vector diagram
at the terminal point is equal to the phase difference between the edge
of the aperture and the center, corresponding to the difference in path
length to the field point. At a distance greater than D?/2\ (Fig. 6-10b)
there is no longer any cancellation between horizontal components of the
vector elements; at a distance D2/ the resultant is a good approximation
to the value for R =

To make a more quantitative evaluation we must consider the actual
values of the field intensity and the gain. For this purpose we will
start from the Fresnel approximation [Eq. (7a)], which in the present case
takes the form

R, (84)

_—
je / / F(p,¢')e 2%y dp dg’. (85)

It will be recogmzed that this is equivalent to the expression for the
on-axis field intensity in the Fraunhofer region of an aperture having a
quadratic phase error p?/2R. Equation (78) is easily integrated for
uniform illumination giving

. . ka? .
U =2 ni{-— })eik 86
? J St <4R> e, (86)

1The vector diagrams depict the variation of only the form factors of the field—
that is, the integrals of Eqs, (7)—with increasing distance R,
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This corresponds to radiated power per unit solid angle

1/e\? . {kar\]?
1 o )]

or
1{eY* 4 (sin z\* ka?
I
The total power radiated by the aperture is simply 4(e/u)*A, whence the
gain is
4xd [sin z\°
¢=% (T) ' (88)

The factor (sin z/z)? expresses the ratio of the gain measured at a distance
R to the gain G of the true Fraunhofer field at infinity. The accepted
values of the minimum distance at which pattern measurements may
properly be made vary between R = D?/A and R = 2D?/A. The
values of the gain ratio of Eq. (89) for the two cases are

D? G

=2 Foog (89)
2
R=2D G _ g (90)
G

There is a little difference between them; for the cases most commonly
encountered the 2D2/\ criterion is to be favored. Other considerations
which are discussed in Chap. 15 also point in that direction.




CHAPTER 7
MICROWAVE TRANSMISSION LINES
By S. SiLver

We have dwelt at considerable length on general theoretical consider-
ations underlying the design and operation of microwave antennas as a
whole. We now enter upon a program of studying the components of an
antenna, starting with an investigation of microwave transmission lines.

Usually about a foot, or perhaps two, of the line immediately preced-
ing the radiating system is at the disposal of the engineer for the insertion
of matching devices to compensate for the impedance mismatch of his
antenna; this section will be referred to as the feed line. The following
discussion of feed lines will be confined to elementary transmission-line
theory and problems; for more extensive treatments, in particular for the
analysis of matching devices, the reader is referred to the sources indi-
cated below.! '

7-1. Microwave and Long-wave Transmission Lines.—A brief com-
parison of long-wave and microwave lines was made in Sec. 1-4. It was
pointed out that the use of unshielded parallel wire lines becomes imprac-
tical at microwave frequencies largely because the power-carrying
capacity is so sharply limited by the small interline spacing required
if the line is not to radiate. The relation between the interline spacing
and radiation follows from the ideas developed in Chap. 3. We may
consider the alternating current in a wire as a line distribution of oscillat-
ing dipoles; corresponding points on a pair of wires carrying equal and
opposite currents are occupied by similar dipoles in opposite phase. If
the spacing between the dipoles is small compared with a wavelength,
their radiation fields will be out of phase at all points in space and annul
each other. On the other hand, if the spacing is comparable to the wave-
length, the double-dipole system can radiate, there being directions in
space for which path-length differences will compensate for the intrinsic
phase difference of the members of the pair. In addition, it should be
noted that large interline spacings can be used at long wavelengths, since
the radiation-field intensity of a dipole varies inversely as the square
of the wavelength [¢f. Eqs. (3-148)].

1J. C. Blater, Microwave Transmission, McGraw-Hill, New York, 1941, Chaps. 8, 4;
R. L. Lamont, Wave Guides, Methuen, London, 1942; Montgomery, Purcell, and
Dickie, The Principles of Microwave Circuits, Vol. 8; and N. Marcuvitz, The Waveguide

Handbook, Vol. 10, of this series.
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Another hindrance in the-use of unshielded lines is their susceptibility
to interference, which would cause serious installation difficulties. If
the line is not to radiate, its elements must be symmetrically disposed
with respect to near-by conductors, in order that equal and opposite
currents be maintained at all paired points on the line. Perturbation
of the line balance would also give rise to impedance difficulties.

It accordingly becomes clear that shielded lines are required for
trasismission at microwave frequencies. Two types are in use: (1) two-
conductor lines comsisting of one conductor surrounded by a second,
separated by dielectric, and (2) hollow metal tubes. These lines are
to be considered as waveguides for electromagnetic waves in the enclosed
dielectric rather than as transmission lines carrying current and voltage
waves. In fact, in the hollow waveguide it is not possible to establish
definitions of line current and line voltage that are comparable to the
quantities defined in a parallel wire line; under special conditions current
and voltage can be defined for the two-conductor line. However, while
a new approach must be taken in the fundamental analysis, it is found
that under suitable conditions transmission-line analogues of voltage and
current can be defined and use can be made of the line theory summarized
in Chap. 2.

7-2. Propagation in Waveguides of Uniform Cross Section.—We shall
confine our discussion to lines of arbitrary but uniform cross section,
that is, waveguides with cylindrical
walls. The guide walls will be taken
to have infinite conductivity; the di-
electric in the interior will be assumed

to be homogeneous, with dielectric n s
constant ¢, permeability g, and zero —-Z
conductivity; the dielectric will also

be assumed to be free of charge. /
We shall consider electromagnetic ¥
fields in these waveguides which have
a harmonic time dependence; they
will satisfy the homogeneous field equations obtained from Egs. (3-32) by
setting the source functions and the conductivity equal to zero. ‘

We shall take the z-axis of the coordinate system to be parallel to the
generator of the cylindrical walls of the waveguide. Since the guide is
homogeneous in structure along the z-direction, a wave of a single fre-
quency will depend on z only through a phase factor and possibly a
damping factor corresponding to progressive attenuation of the wave.
That is, the z-dependence of all field components is of the form e¥», where
7 is possibly complex:

x

F1g. 7-1.—On waveguide propagation.

v =a+j8 , (1)
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With the convention that « and 8 are both to be positive quantities, the
upper sign in the exponential corresponds to propagation in the positive
z-direction, the lower sign to propagation in the negative z-direction.
Writing out the field equations in component form and taking into
account, the postulated form of the z-dependence, we obtain for a wave
traveling in the positive z-direction

JE,

JopH, = — ay vE,, (2a)

joull, =% yp, (2b)

jouH, = — f’% a(fl’: (20)
and

jwell, = ag * 4 yH,, (3a)

joelty = ~ 2y, (3)

weBy = ag, - "az‘. 3c)

For most purposes an alternative set of equations is more convenient
To use. Taking Egs. (2a), (2), (3a), and (3b) we find, on substitution.
and rearrangement,

. 8H, JE,
2 = — — )
«?E. Jeu 5 T 5y (4a)
. 6H, oK,
2F = 9t 95
KB, = jou az 7 oy (4)
and
. oFE oH
2 = R 2
?H, = jwe 3y Y s (5a)
. Ok, dH,
2 = — = -
x*H, Joe oy (5b)
On substitution of these into Egs. (2¢) and (3¢), we obtain
0'E,  J'E.
T TE=0 (6a)
FH.  oH, | . _
522 +a—y2 +KH:‘_0, (Gb)
with
= e + vt = kT + v @

The structure of this second set of equations shows that there are
two independent field components E., H, from which the others can be
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derived by Egs. (4) and (5). We can consequently classify waves in
uniform guides into three fundamental types:

1. TEM-waves (transverse electromagnetic waves) with E, = H, = 0.

2. TE-waves (transverse electric waves) with E, = 0, H, » 0.

3. TM-waves (transverse magnetic waves) with H, = 0, E, # 0.

TEM-waves.—These are also known as the principal waves. The
electric and magnetic field vectors lie in a plane transverse to the direc-
tion of propagation as they do in a plane wave. From Egs. (4) and (5)
it is evident that the principal wave will vanish identically unless x?2 = Q.
With this condition on «, we find from Eq. (7)

v = (a +78) = jk = ju(pe)* ®

If such a wave can exist, it will propagate without attenuation and
with a phase constant 8 = w(ue)’* = 2x/\ which is the same as that
for a plane wave in an unbounded medium.

To obtain information about the field vectors we must return to
Egs. (2) and (3). It is directly evident from Eqs. (2a) and (2b) that

€ ¢
H= (-) (i. x E). 9
u

Thus E and H are related as in a plane wave; they are mutually perpen-
dicular and transverse to the direction of propagation. Equation (2¢)
becomes
3E, OE,
or dy

=O,

whereas substitution of Eqgs. (2a) and (2b) into Eq. (3¢) yields

dE. | 8E, _
o + oy = 0.

The first of these states that in the dependence on z and y the field is
derivable from a potential function U(z,y); that is, we can write

E =emvVU(zy). (10)

It then follows from the second of the above equations that U(z,y) must
be a solution of the two-dimensional Laplace equation:
U | U
s + E 0. (11)
The electric vector of Eq. (10) is everywhere normal to the equipoten-
tial surfaces U = constant. Since the conductivity of the guide walls
is infinite, E must be normal to the walls by the boundary conditions
formulated in Sec. 3-3; consequently, the walls of the guide must cor-
respond to equipotential lines of U. This, however, raises an important
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distinction between single-conductor and two-conductor lines. In the
case of a single-conductor line we are concerned with a solution of
Laplace’s equation in a simply connected region—a solution that assumes
a constant value over the boundary. The only such solution is that
for which U is a constant over the entire region; hence the gradient and
the field vectors are zero. There is no TEM-wave possible in a hollow
wavequide. In the two-conductor line we seek solutions of Laplace’s
equation in a multiply connected region. The required solution assumes
one constant value over one boundary and another constant value over
the second boundary, as in the electrostatic problem of two conductors
at different potentials. Such solutions exist; consequently a TEM-wave
is possible in any two-conductor line. Furthermore since v is a pure
imaginary for all frequencies, the lossless two-conductor line supports free
propagation of this wave type at all frequencies.

T E-waves.—These are known also as H-waves. The electric field is
wholly transverse to the direction of propagation, while the magnetic
field has a longitudinal component H, in the direction of propagation.
It is clear from Eqgs. (4) and (5) that all the other components can be
derived from H,. If we write

H, = y(z,y)e™, (12)
¢ must satisfy Eq. (6b):

V¥ + k4 = 0. (7.60)
We must find solutions of Eq. (6b) that lead to field components satisfy-

ing appropriate boundary conditions at the guide walls. By Eqs. (3-24)
and (3-28), these conditions are

(n x E)
(n-H)

(n.By — n,Ei, = 0, (I
nH, + n,H, = 0, (ID

Il

1

where n is a unit normal to the boundary, directed into the interior of the
guide. From Eqgs. (5a) and (8b) it follows that (II) is equivalent to
requiring

oH. oY _

an —B;L—O (13)

over the boundary. On inserting the values of E., E, from Eqs. (4a)
and (4b) into (I), one finds that condition (I) likewise reduces to Eq. (13).
Thus, the boundary condition (13) is the only one that need be imposed
on the solution.

Solutions to Eq. (6b) which satisfy Eq. (13) are possible only for
definite values of x. These are known as the characteristic values; we
shall designate them by «... To each characteristic value there corre-
sponds a set of wave types which are spoken of as modes of propagavion;
in most cases of interest there is only one mode for each value of x. Any
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one mode is completely specified by giving the field configuration over a
cross section of the line. The propagation constant v,.. for a given mode

18
Yo = (K&, — k2. (14)

It is immediately evident that if &2, < k2, then v, is a pure imaginary
and the wave is propagated without attenuation. Conversely, if
k%, > k? then .. 1s real and the wave is attenuated. A wave of fre-
quency v = 2r/w will, therefore, be freely propagated only in those
modes for which w(ue)!* = 27/N > kma. The phase constant for a given
mode in which free propagation takes place is

Bm = o = (k" ()

Gmn

If we define the cutoff wavelength A<, by the equation

2r
Kmn = W! (16)
then the wavelength in the guide is
A
N = a7

[T

When the wavelength in unbounded dielectric exceeds the cutoff wave-
length, the wave cannot propagate in that particular mode. A hollow
waveguide thus behaves like a high-pass filter, for there is a definite
upper limit to the cutoff wavelength, corresponding to the smallest
characteristic value k... In terms of the free-space wavelength A\, and
the specific inductive capacity k. = ¢/eo, the guide wavelength is given by

Tk e
)\gm = )\_0118__ . (17(1)

1 A 2712’
e )

the permeability u of the medium is assumed to be negligibly different
from that of free space, uo.

The wave type, or mode, corresponding to a characteristic value
Knn 18 designated as TE,,.. It follows from Eqs. (5) and (12) that the
transverse magnetic field is given by

H = - Y eV,

x?

The complete magnetic field is, therefore,
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H=cn (— L+ ¢i.)- (18)
The electric field is given by E = (1/jwe) V x H or
E = — %‘ (H xi). (19)

T M-waves.—The magnetic field is wholly transverse to the direction
of propagation, whereas the electric field has a component E, in the
direction of propagation. These waves are known also as E-waves. If
we write

E. = ¢(z,y)e™, (20)

¢(x,y) must satisfy Eq. (6a):
V¢ + k2¢ = 0, (7.6a)

which is the same equation as that for ¢(z,y) in the case of TE-waves.
The essential difference between the problems arises from the boundary
conditions. The boundary condition (I) is a statement that at the walls
the tangential electric field must be zero. We thus require

. nkEy, — nE, =0, (21a)
E, =0; ie., o(z,y) =0, (21b)

over the walls. Substituting from Eqs. (4a) and (4b), we find that
condition (21a) is equivalent to

(n x Vo) = 0. (21c)

If condition (21b) is satisfied, the boundary corresponds to a curve of
constant ¢; hence V¢ is normal to the boundary, and condition (21¢) is
automatically satisfied. Further, from Eqgs. (5a) and (5b) it follows that
for TM-waves Eq. (2la) is equivalent to the boundary condition (IT)
on the magnetic field, stated previously. Again, therefore, we have a
single boundary condition, namely, Eq. (21b), to impose on the solutions
of Eq. (6a).

As in the case of TE-waves, it is found that solutions ¢(z,y) of Eq. (6a)
which satisfy the boundary condition exist only for certain character-
istic values k..; these are, of course, different from the 7TE-values. To
each characteristic value there corresponds at least one wave type or
TM-mode. The general remarks concerning the propagation constant
vmn and the conditions for free propagation are equally applicable to the
TM-mode; the guide wavelength is given again by Egs. (17) and (17a).
It follows from Eqgs. (4a) and (4b) that the complete electric field, for a
single mode, is given by
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E=¢ (— ;:%Vrb + ¢i,); (22)
the magnetic field obtained therefrom by H = — (1/jwu)(V x E) is
H = ;’—7‘ (E xi,). (23)

7-3. Orthogonality Relations and Power Flow.—Examination of Eqs.
(18), (19), (22), and (23) shows that in a freely propagated mode, for
which v = jB is a pure imaginary, the transverse electric and magnetic
fields are in phase with each other and are in time quadrature with the
longitudinal field component associated with the given mode. The funec-
tions ¢ and ¢ are arbitrary to within a multiplicative constant; by a
simple readjustment of constants which does not affect the relative
magnitudes and phases of the field components, the latter can be put in
the following form:

T E-waves:
H, = jHae H,. = f)% Va, (24a)
E, = E, e E. = Waxi, (24b)
H, = Hu e, H, = i—# Va. (24¢)
TM-waves:
E, = jEge E.. = ;% ba, (25a)
E, = E e —ife; Eu = Vo, (25b)
H, = Hye b, H, = ;’—: i, x V. - (25¢)

where the functions He,, Fa., Ea,, and H,, are all real. The subscript a
represents the pair of mode indices m, n. Equations (24) and (25) are,
of course, still to be multiplied by arbitrary constants determining the
ampiitudes of the waves. From these expressions it is seen that the
Poynting vector S = § Re (E x H*) arises entirely from the transverse
field components; the power flow is, therefore, entirely along the axis
of the waveguide, no power flowing into the walls of the guide.

The same expressions [Eqgs. (24) and (25)] with 8, replaced by Jva, va
being real, serve also for the modes that are beyond cutoff for the given
operating wavelength. It is seen that in these modes the transverse
electric and magnetic fields are in time quadrature; consequently, there
is no energy flow along the axis of the guide. In fact, the Poynting
vector S = § Re (E x H*) vanishes completely; the energy associated
with these modes is stored in the waveguide in the neighborhood of the
point of their excitation.
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The modes possess important orthogonality properties.! The total
power transported through any cross section of a guide that is supporting
free propagation of several modes is the sum of the powers transported
by the separate modes; there is no energy coupling between modes.
For example, let us consider the power transport Pg of the mixed Poyn-
ting vector S = 3(Ea x Hy) of a pair of modes T'E, and TEy; we have

P =1 / (Eue x Hy) - i, dS

cross
section

dl / (Vo x i) x ol - 02 dS = L2 / V. V¥, dS.  (26)

= Q—wu 2wu

The last integral transforms as follows:

/ Vs Vi dS = / V- (Yo Vi) dS — / YV dS. 27

By means of Green’s theorem, the first integral on the right-hand side
transforms into a line integral over the boundary:

/ V.V dS = — Gv. S a, (28)

the positive normal to the boundary being taken as shown in Fig. 7-1.
Since the function y, satisfies the boundary condition [Eq. (13)] for the
TE-modes, the integral (28) is equal to zero. DMaking use of Eq. (6b)
we have then

[ Vo Vi dS = & / Yays dS. (29)

Interchanging the role of ¥, and ¢, in Eq. (28), we arrive in a similar
manner to

/ Vo« Vi dS = &2 / Yaps dS. (29a)

1t is evident that if a = b, Eqgs. (29) and (29a) can both be satisfied
only if

/ Vo Vi dS = / Vet dS = 0. (30)

We have thus found that
Pab = 0, a # b

Ba /|v¢a[2ds, a=» 31)

2wu

It

1 H. A. Bethe, “Formal Theory of Waveguides of Arbitrary Cross Section,” RL
Report No. 43-26, March 1943.
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It is readily seen that the proof applies without change to the case
where one or both of the modes are beyond cutoff. Similar techniques
lead to the result that there is no energy coupling between pairs of
TM-modes or between a TE- and TM-mode. The power relation is
only one of a number of orthogonality properties. The others are given
without proof: if a # b,

/EazEbz as = /Haszz dS = 0, (320/)
[ Eat . Ebt as = -/ Ha,c . Hbg dS = 0. (32b)

7-4. Transmission-line Considerations in Waveguides.—We have
concerned ourselves in the foregoing with a wave propagated in the
positive z-direction; this is the physical situation which would exist in a
waveguide extending to 2 = -+« with a generator at some remote point
along the negative z-axis. It was found for every wave type that in a
single mode there is a simple linear relationship between the transverse
components of the electric and magnetic fields:

14
TEM-mode: H = Z% G, xE), Z© = (g) : (334)
TE-mode: E = ZO, (H x1i,), ZO& = Jyﬂ‘ (33b)
1 . mn
TM-mode: H = ;o (e x ), 7, = ;’I (33¢)

These are analogous to the current-voltage relationships in a single wave
on an infinite two-wire transmission line. The quantity Z¢, is known
as the transverse wave impedance.

The general field for a single mode in a waveguide that does not
extend to infinity consists of two waves, one propagating in the positive
z-direction, the other in the negative z-direction. The field expressions
for the latter are fundamentally the same as those given by the sets of
Eqgs. (24) and (25), but with % replacing e and with the magnetic
field components reversed in sign to give the proper direction to the
Poynting vector of the wave. Consider, for example, the TE.-mode.
Let A, and B, be the amplitudes of the electric field in the waves propagat-
ing in the positive and negative z-directions, respectively; from Egs.
(24b) and (24c) we have then that the transverse fields are

E. = (A, + Beis)(Vy, x i), (34a)
1 . .
H, = 7 (Ao — BV, (34b)
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On considering the scalar factors that express the dependence of the
fields on position along the waveguide axis, it is seen that the mode
can be set into equivalence with a two-wire transmission line of character-
istic impedance Z{; the electric and magnetic fields are the analogues
of the voltage and current, respectively. It must be noted that the
characteristic impedance of the equivalent line differs from mode to
mode; and econsequently, a waveguide supporting free propagation
of a number of modes cannot be set into correspondence with any one
two-wire line.

The definition of the equivalent two-wire line for a. given mode is
arbitrary to a considerable extent. Given a function Y.(z,y), we may
define a pair of vector functions :

gu(2,y) = 1 Vi x iy (35a)
ho(x,y) = 2 Vo, (35b)

where the constants ¢; and ¢, are required to be such that
/ (8o xhy) -1, dS = 0102/ IVya|2dS = 1. (35¢)
cross section

The constants c¢; and c; are arbitrary. In terms of the new vector func-
tions, Eqgs. (34a) and (34b) can then be written

E, = V.g.(v,y) = [VEPe 782 4 ViDebeslg (2,y), (36a)
H, = Lhi(ey) = 0 VP — Voosaha(ey). (36))
a 2

The quantities V, and I, will be named the voltage and current param-
eters of the mode, respectively. The voltage parameter is the sum
of two “voltage” waves traveling in opposite directions, of amplitudes
V& and V2, respectively.

Equations (36a) and (36h) serve to emphasize the arbitrary feature
of the two-wire line equivalent of a waveguide mode. The ratio ¢;/cs
can be chosen at will; given any ratio, the characteristic impedance of
the equivalent line is

Zo = 20 % (37)

Cy

the voltage and current parameters represent directly the voltage and
current on the equivalent line. The voltage and current parameters
possess one property that is unique, independent of the arbitrary choice
of the constants ¢, and cg, provided Eq. (35¢) is satisfied. The net power
passing through the cross section of the guide in the positive z-direction
is

P=3 / [Re (E, x HF)] -1.dS = 3 Re V.I[F. (38)
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Thus, any choice of definition of the voltage and current parameters
leads to a two-wire line representation in which the power flow computed
on the basis of the equivalent voltage and current is equal to the power
transport along the waveguide of the given mode.

One possible choice of the definition of the equivalent transmission
line is to take ¢; = ¢2 = 1. The function y.(x,y) is itself arbitrary to
within a multiplicative constant; it can, therefore, be chosen so that it
satisfies the normalization condition

/ L alds = 1. (39)

The characteristic impedance of the line in this case is equal to the trans-
verse wave impedance. This definition has one shortcoming: It is
possible to change the dimensions of the waveguide, other than by a
scale factor, without changing the characteristic impedance of the
equivalent line. Consider, for example, a pair of two-conductor lines,
having different cross-sectional dimensions and configurations, joined
together to form an infinite line. The wave impedance of the TEM-mode
is independent of the cross-sectional dimensions, and on that basis alone
the hybrid line is equivalent to an infinite homogeneous two-wire line.
The treatment of the junction effect can be simplified considerably by a
different choice of the definition of the characteristic impedance of the
line, obtained by multiplying the wave impedance by a factor cs/c, that
is a function of the cross-section geometry. In Sec. 7-6 it will be shown
that there is a natural physical definition of the voltage and current
parameters for a TEJM-mode which leads to a characteristic impedance
having the desired properties. Similar considerations apply to the other
modes; it is possible to choose the ratio ¢o/ci in Eq. (37) to be a function
of the cross-sectional dimensions of the waveguide in such a way as to
simplify the analysis of problems involving junctions between wave-
guides of different cross section.!

The transmission-line analogy develops more fully if we consider the
waveguide to undergo sudden changes in structure. Such changes may
be produced by obstacles inserted at some point in the guide, a sharp
transition in the properties of the dielectric medium, or a sudden transi-
tion to a waveguide of different cross section—to mention but a few.
We shall consider in detail the simplest of these cases—a sharp transition
in the dielectric in a guide of uniform cross section. For convenience
the boundary between the two media will be taken to be in the plane
z = 0, as shown in Fig. 7-2. Let the constants of the medium to the
left of z = 0 be €, u; and those of the medium to the right of z = 0 be

1 For further details see J. C. Slater, Microwave 7T'ransmission, MecGraw-Hill,
New York, 1942, Chap. 4.
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€, p2. As a typical case consider a TE-wave of a single mode to be
incident on the boundary from the left. To the right of z = 0 we will
have a transmitted wave and to the

/ left a reflected wave, in addition
€1, ; €, M, to the incident wave. No other
2=0

waves will occur, since the con-

tours of the cross section are uni-

. T . form and there is no necessary

fie. 7'2'_Dlsmm:$l:y in waveguide StrUcJistortion of the field configuration

at the boundary; these three waves

will suffice to satisfy the boundary conditions on the fields at the discon-
tinuity.

The field vectors of each of the three waves are derived from a scalar
function ¢(x,y) according to Eqgs. (24a) to (24c). Furthermore, the
scalar functions for the three waves all satisfy the same differential
equation [Eq. (6b)], and the same boundary conditions at the walls of the
waveguide; hence, all three fields derive from the same scalar function.
The ratio cy/c; in Eq. (37) is of no immediate consequence in this case,
because the cross section is uniform and may be chosen equal to unity;
the function y¥(z,y) may also be required to satisfy the normalization
condition [Eq. (39)]. The only significant differences between the waves
are the amplitudes and the transverse wave impedance. The field in
region 1 is then!

E, = [ViPeits + VOdtlg(z,y), (400)
H, = ZL [ViPeits — Vioeiselh(z,y); (40b)

and in region 2,
E., = [ViPe7*=]g(x,y), (41e)
H, = 75 [V h(z,). (410)

According to the boundary conditions (Sec. 3-3) the transverse
electric and magnetic fields must be continuous across the plane z = 0;
we have then

Vi + V= VP, (42a)
1 1
7o (VP = Vil = 70 ViR, (42b)

As in the case of a two-wire line, these equations express the continuity
of voltage and current at the junction of two lines of different character-
istic impedance. We can also define an electric-field reflection coefficient
T'(z),

1 The mode subscript a will be dropped to simplify the notation.
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-
@ = II;<1+> etif = T'(0)eh, (43)
1

which corresponds to the voltage reflection coefficient of Eq. (2:27).
From Egs. (42a) and (42b) the value of the reflection coefficient T'(0) at
z = 0 is found to be

_ Z(20) —_ Z(IO)_
'O = z5 79 @
It is evident that this is equivalent to the reflection coefficient of a line
of characteristic impedance Z{ terminated in an impedance Z§. With
respect to the terminal impedance, it will be noted that the line to the
right, extending to infinity, is equivalent to a line terminated in its own
characteristic impedance and hence presents an input impedance ZP at
the plane z = 0.

The reflection coefficient T'(z) is to be regarded as the fundamental
transmission-line quantity for a waveguide. Evidently it is free from
the arbitrary factors entering into the definition of the voltage and current
parameters and the characteristic impedance of the equivalent trans-
mission line. It is apparent from Eq. (43) that it transforms along the
line just like a voltage reflection coefficient. Also, on computing the
Poynting vectors of the incident and reflected waves, it will be seen that
the electric-field reflection coefficient bears the same relation to the inci-
dent and reflected power as the voltage reflection coefficient (Sec. 2:7).
At any point along the line we can regard the section to the right as
presenting an input impedance, normalized to the characteristic imped-
ance of the mode,

1+ T'(2)
The normalized impedance is also independent of the choice of the
definition of the equivalent transmission line. Making use of the
transformation property of T'(z) expressed by Eq. (43) it is found that
the normalized impedance transforms along the waveguide according to

$(2) ¥ Jtan gl

= 1F () tan Bl (46)

G
just as it does on a two-wire line. The normalized admittance can also
be defined in the same manner as was done in Sec. 2-6,

1
2 f——J—
77( ) g.(z)’
and it is evident that it also transforms along the waveguide according
to Eq. (46). Thus, the entire discussion in Chap. 2 on impedance mis-
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match, standing-wave ratios, and line transformations can be carried
over to the fields on any one mode in a waveguide.

7-6. Network Equivalents of Junctions and Obstacles.—The develop-
ment of the problem considered above proceeds in a similar manner for
TEM- and TM-modes and leads to equivalent two-wire line analogies
for any single mode. The discontinuity that we have considered in that
problem is equivalent to a junction between a pair of two-wire lines of
different characteristic impedances, such that the capacitative and
inductive effects due to the junction are negligible. At such a junction
both the current and voltage are continuous, corresponding to the
continuity in the transverse magnetic and electric fields, respectively, in
the waveguide problem. As a second step in developing the transmis-
sion-line analysis we shall consider junction effects and the problem of
obstacles inserted into a waveguide. The general theory of these prob-
lems is treated extensively in other volumes of this series.! We shall
restrict ourselves here to several qualitative remarks.

As a specific problem let us consider a junction between two wave-
guides of the same cross-sectional shape but different dimensions, joined
in the plane z = 0 (see Fig. 7-3).
The dimensions of both guides are
assumed to be such that they can
support free propagation at the given

220 frequency in one mode only; we shall
Fro. 7-3——Junction effects in wave- Tefer to the latter as the dominant-
guides. mode wave. We shall assume the
dominant-mode wave, set up by a
generator at a remote point on the negative z-axis, to be indident on the
junction. Since there is a change in cross section at the junction, we
should certainly expect to find a reflected wave of the dominant mode on
the left and a transmitted wave of that mode in the waveguide on the
right. The fields must join in the plane 2 = 0 so as to satisfy the appro-
priate boundary conditions. Over the opening in the junction the trans-
verse fields must be continuous; over the metal surface of the junetion
the transverse electric field and the normal component of the magnetic
field must vanish. The latter conditions cannot be satisfied by the three
dominant-mode waves alone; higher modes must be excited in both
waveguides at the junction.

The generation of the higher modes arises from the necessary distor-
tion of the electric and magnetic fields due to the edge of the junction
and its metal surface. The electric-field lines must be normal to the
latter—a condition that cannot be met by the dominant mode alone in
the waveguide to the right. However, according to our assumptions as

1 Principles of Microwave Circuits, Vol. 8, and The Waveguide Ilandbook, Vol. 10.
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to the waveguide dimensions, the higher modes cannot propagate; except
within a short distance of the junction (of the order of a wavelength)
the fields consist essentially of dominant-mode waves. The higher modes
represent electric and magnetic energy stored at the junction. It is
possible to represent these energies as energies stored in a reactive network
equivalent for the junction.! In the general case the network takes the
form of a T- or Il-section (see Sec. 2-2). The effect of the junction on
the dominant-mode wave thus arises from two factors: (1) a discontinuity
in characteristic impedance and (2) a reactive four-terminal network
inserted between the lines. The precise values of the elements of the
latter network again depend on the definition of the characteristic imped-
ance of the equivalent line for the dominant mode. A number of junc-
tion networks are given in the Waveguide Handboeck, Vol. 10 of this
series; in each case, the definition of the characteristic impedance (or its
reciprocal, the characteristic admittance) is given. The elements of the
network can, of course, be expressed as normalized values with respect
to the characteristic impedance of either guide.

In the waveguide to the left, at a short distance from the junction,
we have only the incident and reflected dominant-mode waves. Here
we can apply transmission-line concepts to the dominant mode and
define the corresponding electric-field reflection coeflicient. This reflec-
tion coefficient can be related to an effective impedance terminating the
line at the junction. This impedance, in turn, may be expressed as due
to a junction network across the output terminals of which there has been
connected the characteristic impedance of the guide to the right. These
procedures lead to consistent definitions of the junction impedance.
The junction network necessary to represent the stored energies, when
inserted between the transmission-line representations of the two wave-
guides, gives rise to a reflection coefficient in the region on the left cor-
responding to the electric-field reflection coefficient obtained on the basis
of field-theory analysis.

The theory of obstacles develops along similar lines. Tt is found, as
in the case of junctions, that an obstacle has the same effects on impedance
and energy stored as a four-terminal network inserted between a pair of
transmission lines whose characteristic impedances are the wave imped-
ances of the dominant mode. It must be emphasized that each mode
which can propagate has its own transmission-line analogue and that
simple transmission-line theory applies to a waveguide only when it can
support but one mode. Transmission theory alone can give no informa-
tlon as to the network equivalents of junctions and obstacles; these
must be obtained by ficld-theory analysis. The equivalent network also
depends on the particular dominant mode being considered. Once the
equivalent network has been established, it can be expressed as a T-sec-

t 8ee Principles of Microwave Circuils, Vol. 8 of this series,
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tion, and the impedance transformation properties of such networks can
be used in the conventional manner.

7-6. TEM-mode Transmission Lines.—We have pointed out earlier
that in general it is not possible to set up unique definitions of voltage
and current in waveguides, and we have therefore set up transmission-
line analogues in terms of wave impedancesand field-reflection coefficients.
In the case of TEM-modes, however, it is possible to set up transmission-
line quantities that are directly related to the two-wire line quantities
discussed in Chap. 2.

It was found in Sec. 7-2 that the electric field over any cross section
is derivable from a potential. Hence, over a cross section, the line integral
of the electric field from the inner conductor C; to the outer conductor
C.isindependent of the path and indeed is equal to the difference between
the values of the potential over the conductors. This defines the voltage:

C: Ca

Ve = / E.dr = e—"‘/ VU .dr = (Uy — Upe . (47)
C1 C1

There exists also a relation between surface integrals over any closed

region in a cross section:

95(VxH)-i,dS=jwe§6E-i,dS=0. (470)

It follows that the line integral of H over a closed curve surrounding C,
is independent of the choice of the curve. In particular, let us take a
path along the boundary of C;,. His tangential to C; and by the bound-
ary condition (Sec. 3-3) is equal in magnitude to the surface current
density K. Hence the line integral of H gives the total current carried
by Ci:

560 H-.ds = Ie. (48)

The line integral of H along the boundary of C» gives the total current
carried by the latter; by virtue of the equality of the line integrals the
two currents are equal. On carrying through the details of the vector
calculation, it will be found that the current on C, is opposite in direction
to that on C,. There is thus a direct two-wire line analogue with voltage
V and current I. Corresponding to these we define a characteristic
impedance,

Zs =ll’ - (E)M (49)
€ 95 |VU| ds
[of

This is, of course, different from the wave impedance for the mode.
The relationships between the Z, defined in Eq. (49) and the two-wire-
line impedance become more evident on calculating the equivalent series
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inductance and shunt capacitance per unit length of the two-conductor
system. The magnetic energy for unit volume is $u|H|%, and therefore
the magnetic energy per unit length of line is

W = ; f/ (VU2 dS. (50)
cross section
If L is the equivalent inductance per unit length, then
W, = 3LI?;
hence
e[ Ivupas
L= " (50a)

Similarly the electric energy per unit volume is 3¢|/E|2, and the electric
energy per unit length is

W.=3 // |VU|? d8. (51)
cross section
The equivalent capacity € per unit length is then
W, =4CV?
or
¢ / [ VU2 dS
C = T (51(1)

According to Eq. (2:20) the characteristic impedance of a lossless two-

wire line is
T
2o = \/C"

Combining this with Egs. (50a) and (51a), we obtain the quantity defined
in Eq. (49).

For most practical purposes a two-conductor guide supporting the
TEM-mode as its dominant wave can be treated from the voltage-current
point of view. Applications of this fact will be made in Secs. 7-9 and
7-10 in discussing impedance transformations and matching devices for
coaxial lines.

7-7. Coaxial Lines: TEM-mode.—The only type of two-conductor
guide of major importance is the coaxial line formed by a pair of concentric
circular cylinders. Let a be the radius of the inner conductor, b the radius
of the outer conductor. Cylindrical coordinates 7, 6, z are suited for the
discussion of this system, r and 8 being polar coordinates in a cross section
of the line. We shall first consider the TEM-mode. The solution to the
potential problem is well known from electrostatics:
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Uxy) = — Cfﬁﬁ) In (g); (52)

where V is the voltage across the line. The electric-field intensity is,

Line of zero field intensity

o)
Fia. 7-4—Coaxial-line modes: (@) TEM-mode (no cutoff wavelength); (b) TEii-mode
Au'® = (a + b)r]. electric field; ————— magnetic field,
therefore,
12\ i emimn (53)
E=- b ’
r\ln-
and the magnetic-field intensity
1/e\* V .
H=+-1[- " {peTFibs
o\ p , (53a)

In —

where i, and i; are unit vectors in the directions of increasing r and 6.
Here v has been replaced by j8, and the double sign indicates a wave
traveling in either the positive or negative z-direction. The field con-
figuration and the current distributions on the conductors are completely
symmetrical about the z-axis; the former is shown in Fig. 7-4.

The current is given simply by 2rrH(r):

7o (' V.
In{-
a

It follows then directly that the characteristic impedance, in the sense
of the previous section, is

Zo = %r (’—2) In (g) (54)

For most dielectrics of interest p differs negligibly from the free-space
value wo. On introduction of the specific inductive capacity k. = /e,
the characteristic impedance becomes
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60 b
Zy = . In (5) (54a)

The series inductance and shunt capacitance per unit length of the line,
computed from Egs. (50a) and (51a), are found to be

_F
L = 5 In (E)’ (55a)

27
C = W (55b)

In | =

a

7.8. Coaxial Lines: TM- and TE-modes.—In the study of the TE-
and TAM-modes we are concerned with the solutions of equations of the
form

9*F | o%F

gy + W + «*F =0, (7-6a)

where F will stand for either of the functions ¢(x,y) or ¢(z,y) of Egs. (12)
and (20) respectively. On introduction of the polar coordinates r, 8,
the differential equation becomes

o 1 oF 1 9%

o T e TR

+ «2F = 0. (56)

The equation is separable in the variables r and 6; in particular we shall
write

cos mf

sin m’

F=R(r)‘

then R(r) satisfies the equation

d2R+1dR+K2<1—ﬂz>R=0. (57)

dr? r dr Kir?

This is the differential equation for the cylinder functions of order m, in
the variable «r. The pair of linearly independent solutions suited to
the finite region with which we are concerned here consists of the Bessel
function J,(kr) and the Neumann function N, (k7). The latter becomes
infinite at r = 0; however, since the origin 1s excluded by the inner con-
ductor, the Neumann function is admissible as a solution. The general
solutions of IZq. (56) are therefore

¢(x!y) — - AT L1
sley) | = (AT (k) + BN (xr)](C cos m8 + D sin mé).

The field must be single-valued in 8; as a consequence m can have only
integral values. I'or any given value of m it is possible to eliminate one



220 MICROWAVE TRANSMISSION LINES [SEc. 7-8

of the trigonometric functions by proper orientation of the z,y-axes.
Without loss of generality we can set D = 0, taking as the solutions

vy | _
sley) | = [AJ m(xr) + BNn(xr)] cos mb. (58)
a. TM-modes—We must consider the TM- and TE-modes sepa-
rately. In the case of the 7M-modes we are concerned with the function
¢(z,y) and the boundary condition of Eq. (21b); we require ¢ = 0 for
all valuesof @atr = aandr = b. Thisgives two homogeneous equations,

AJm(xa) + BNn(xa) = 0,
AJ(xb) + BNn(xb) = 0,

for the determination of the ratio B/A. Solutions other than 4 = B = 0
exist only if the determinant of the coefficients vanishes:

L (k@) N .(xa)
Jm(kb) N,(xb)

This in turn is satisfied only for a discrete set of values of «; the latter are
the characteristic values which, arranged in order of increasing magnitude,
we shall designate by «m.. If we write 4 = «a, a = b/a, the equation
appears in the standard form

Jn(W)Nn(aw) — Nu(u)Jm(au) = 0. (60a)

Roots of this equation are given in Jahnke and Emde.! For a given value
of o the smallest value of u.. occurs for m = 0; this gives the longest
cutoff wavelength for these modes. Examination of the roots shows that
forl <a<,

(59)

= Jn(k@)Nom(kb) — Jn(ch) Nm(ka) = O. (60)

a 3a
b1r_a>U01=aK01>b—_——a'

Therefore the cutoff wavelength A{3 for the mode is given approximately
by

Ny ~ 2(b— a). (61)

We recall that propagation in a given mode can take place only if the
wavelength in unbounded dielectric is shorter than A2, In all practical
cases the spacing between the conductors is much smaller than the
wavelength, and there is no need to be concerned about the simultaneous
excitation of TM- and TEM-modes.

b. TE-waves.—Here we are concerned with the function y¥(z,y) and
the boundary condition of Eq. (13); for the case at hand the latter
becomes dy/dr = 0 for r = a and r = b. This leads to the conditions

1E, Jahnke and F. Emde, Tables of Functions, Fig. 204, Dover Publicatices
Reprint, New York, 1943.
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AJ., (xa) + BN, (xa) = 0, (62)
AJ" (xb) + BN (xkb) = 0,

on the constants 4 and B. Nontrivial solutions for the latter exist
again only for the characteristic values «,, that satisfy

Jo(ka) N, (xb) — Jo(kb) N, (ka) = 0. (63)

Tor m = 0 we have the relation Ji(z) = —J(2), and similarly for the
Neumann function; the characteristic values of the TEq,.-modes are there-
fore given by the roots of

Jl(u)N'l(au) - Jl(au)Nl(u) = O, (630;)

where «, a have the same meanings as previously.

From what has been said about the roots of Eq. (60a), it is evident
that the cutoff wavelength of the TFEy.-modes is shorter than that of
the TM-mode and that the former are of no consequence as propa-
gating modes in a practical case. The roots of Eq. (63) for m > 0 have
been discussed by Truell.! For our immediate purposes we need con-
cern ourselves only with the lowest mode of the series, the TE;-mode.
The field configuration for this mode is illustrated in Fig. 7-4. For this
case 1t is found that the characteristic value is given very closely by

2
K11 = m; (64)
thus the cutoff wavelength is
A2 = n(a + D). (64a)

This is the mean circumference of the inner and outer conductors. 7To
prevent propagation of the TE1,-mode the mean circumference must be smaller
than the operating wavelength. This imposes limitations on the dimen-
sions of the line and in particular on the spacing between the conductors;
the latter in turn limits the power-carrying capacity of the line.

7-9. Cascade Transformers: TEM-mode.—The termination of the
line in a radiating system in general gives rise to a reflected TEM-wave
and to excitation of TM- and TE-modes. We shall assume that the
line dimensions are such that the latter modes cannot propagate and
confine our attention to the region of the line where only the incident
and reflected TEM-waves exist. The reflected wave represents an
impedance mismatch, and it is necessary to consider a correction for it.
Perhaps the most useful device is a cascade transformer, a section of
coaxial line of characteristic impedance different from that of the main
line. Two such transformers are illustrated in Fig. 7-5: (a) the sleeve

1 R. Truell, Jour. Applied Phys., 14, 350 (1943).
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type with characteristic impedance smaller than the line impedance and
(b) the undercut type with characteristic impedance larger than that of
the line. As has been pointed out before, the junctions give rise to other
modes; however, if the change in radius is small, the junction effect is
small. Data on the latter will be given below.

- —
Generator Load

]

Fia. 7-5.—Cascade impedance transformers: (a) sleeve section; (b) undercut section.

The dimensions desired in a transformer can be determined as fol-
lows: Except for junction effects, the voltage and current and the input
impedance looking toward the right have the same values at adjacent.
points on either side of the junction. Let Z; be the characteristic imped-
ance of the transformer, Z, that of the line, and Z; the input impedance
at B. Then, from Eq. (2-32), Sec. 2-6, the input impedance at A is

_ gz (% +3Zi tan I\
Z4) = Z \Zy + jZ tan gl (65a)
Impedance matching requires Z(A) = Z,; that is,

Zo = 7, (‘ + JZULZ“L@Z)- (65b)

Z5 4+ jZ tan Bl
Separation of real and imaginary parts gives two equations from which,
for a given value of A, one can obtain Z| and the length of the transformer
that matches Z into Z,; the dimensions of the transformers are obtained
from Zy by means of Eq. (54a).

There are points along the line at which Z is real. These points are
A/4 apart, and the impedance is alternately rZ, and Z,/r, where r is the
voltage standing-wave ratio. If cither of these is taken as the junction
point B, it is found from Eq. (65b) that I = A/4. The characteristic
impedance of the quarter-wave section is found to be related to Z, as
follows:
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Zh < Zo if Z:ZT-",

Z(’, > Zo lf Z = TZ[].

The first of these corresponds to a sleeve section; the second to an under-
cut section. In so far as matching is concerned, either can be used.
The sleeve section has the advantage of simplicity of insertion, since
it is necessary only to slip a piece of tubing over the inner conductor
and to solder the seam to ensure good contact; it also has the advantage
of strengthening the line mechanically. An undercut section requires
machining and weakens the line. On the other hand, the sleeve section
reduces the clearance between the conductors and consequently the power
capacity. In both cases the edges of the junction increase the break-
down tendency; this difficulty can be minimized by rounding the edges
of the junction without impairing the matching relations.

It must be emphasized that a single transformer matches properly
at only one wavelength. In general the load impedance is a function of
frequency. Matching over a frequency band, such that the standing-
wave ratio remains less than a prescribed value, can often be achieved
by a series of transformer sections of different lengths and characteristic
impedances. It is difficult to carry the analysis through analytically for
an arbitrary load Z(A). A method of rather limited applicability employ-
ing a tandem of quarter-wave sections has been developed by Fubini,
Sutro, and Lewis.!

While the matching condition of Eq. (65b) always leads to a solution
of the mathematical problem, it is not necessarily true that the trans-
former will be satisfactory. If a large change in radius is required at the
junction, the junction effect becomes significant, and we must add to the
equivalent transmission-line reactive networks at 4 and B corresponding
to the junction effects. It is found? that the network consists of a
capacity across the transmission line at the junction points. The junc-
tion effect can be studied experimentally by means of a half-wave section.
From Eq. (65a) it is seen from transmisson-line considerations alone
that if I = \/2, then Z(A) = Z regardless of the value of Z;; this means
that the standing-wave ratio should be the same on either side of the
transformer. Figure 7-6 shows experimental results obtained with a half-
wavelength sleeve section on a 50-ohm coaxial line with inner diameter
0.375 in. It is seen that the deviation from simple transmission-line
behavior increases rapidly with increasing diameter of the sleeve section.

7-10. Parallel Stubs and Series Reactances.—Another useful device in
coaxial-line design is the parallel stub consisting of a section of coaxial

1 “Frequency Characteristics of Wide-band Matching Sections,”” Radio Research
Laboratory (Harvard University) Report No. 23, April 1943.
2 Waveguide Handbook, Vol. 10 of this series.
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line at right angles to the main line. The arrangement is shown sche-
matically in Fig. 7-7a. The stub is terminated by a metal cap to prevent
radiation. Electrically the stub is a shorted section of transmission line.
If Z; is the characteristic impedance of the stub and [ its length, then
its input impedance, obtained from Eq. (65a) by setting Z = 0, is

19

18

17 [
o
16
/
15

14

/
13

o/
12

©

Voltage SWR

11

]

0 0.10" 0.20" 0.30"
Transformer dia. D-0.375"

F16. 7-6.—Junction effects with cascade transformers; mismatch of a A/2 transformer as a
function of diameter in a coaxial line of dimensions OD = 0.811, ID = 0.375in.

L

10

Z, = jZ; tan Bl. It is thus a reactive element. Consideration of the
current division at A shows that, neglecting junction networks, the stub
is to be regarded as a reactance shunted across the main line. Ifl = \/4,
then Z = «, and the stub introduces no change in impedance at 4;
such a quarter-wave stub is useful as a mechanical support for the inner
conductor. We shall not consider here the refinements required to
eliminate the frequency sensitivity.

The stub can also serve as a matching device. In this connection it
is more convenient to speak in terms of admittances. Let Yo, = 1/Z, be
the characteristic admittance of the main line, ¥ the admittance seen
to the right of A, and ¥, = —jY; cot 8l the admittance of the stub. Itis
possible to locate the point 4 so that the admittance Yis Y = Y, + jB.
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Insertion of the stub gives an admittance at the left of A equal to
Y+ Y.=Yo+4 j(B — Yjcot fI). For matching we require simply
that

Y cot 8l = B. (66)

The structure illustrated in Fig. 7-7b is less widely used but is worth
consideration. The region between AB and the outer conductor C; acts

T
Zo
Zo
—————— A
(@)
77
Zy Zy — Zo
G
A ‘B
2 P——

®)

Fig. 7-7.—(a) Parallel stub reactance; (b) series reactance element.

as a cascade transformer. If Z is the impedance at B, the impedance
just to the right of A in the transformer space is
Zao. = 2V (Z +JZ; tan Bl),

: ® \Z] + 7Z tan 8l
where Zj is the characteristic impedance of the transformev space. The
region AB within the inner conductor acts as a shorted section of line
which presents an impedance at 4 equal to Zc,x = jZ, tan 8l, where Z;
is the characteristic impedance of the inner region. At A we have the
voltage relation Ve,e, = Veu + Vac,; the impedance just to the left of A
is given by

Z(A) = ZC‘;A + ZAcg

= jZ; tan 61 + 25 (Z + 12y tan ‘”)- 67)

Z{ + jZ tan 8l
The structure thus introduces a series impedance at A. It is of interest
to note that the length of the inner region can be made shorter than the
length of the outer region. If the latter is made equal to an integral
number of half wavelengths, the effect of the transformer region is
eliminated and at A we have simply an impedance Zc,4 in series with Z.
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It is found in practice that stubs and series reactance transformers
with dimensions calculated on the basis of the transmission-line formulas
given above do not quite meet the simple theoretical expectations. This
is due to the junction effects neglected in the transmission-line arguments.
The errors, however, are generally small and can be eliminated by small
adjustments of the lengths of the structures. In the case of stubs, the
shorting cap can be replaced by a sliding
plunger in the experimental model to allow
easy adjustment of the length. The use of
series reactance transformers limits the
power capacity of the line; the standing
waves in the inner region produce intense
4 () fields at the open end and increase the
b~ tendency toward electrical breakdown and

/ sparking. An alternative form, which
/ mounts the transformer on the outer con-
s ductor where the electric field is weaker, is
more satisfactory with respect to breakdown
/ characteristic but is less desirable from
t 2 assembly considerations.
f::—;-:—lz:i dar wave. 7-11. Rectangular Waveguides : TE-and
) ) guide.g Y& TM-modes.—The hollow guide of rectangu-
lar cross section is the most widely used
line in microwave antennas. We shall take the z, y-axes to be oriented
as shown in Fig. 78; a is the broad dimension of the guide; b the narrow
dimension. The Helmholtz equation

z

oF | oF

Fr -+ Ee + «F =0, F = {xl/(x,y) (7-6a)

¢(z,y)

is in this case separable in the form

F =X@Y(y).
Substitution into Eq. (6a) leads to the two equations
aX dry
E&—;+K3X=0; d—yg‘f‘K%Y:O; (88)

with
k2 4 k2= 2 (68a)
The solutions have the same form for both members of Eq. (68); for

example,
X(z) = A cos (x;x) + B sin (k.z).

The general solution of Eq. (6a) is
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::(é’??//)) } = [A cos (k) + B sin (x2)][C cos (x,y) + D sin (xy)].  (69)

a. TE-waves.—The solution ¢(r,y) must satisfy the boundary con-
dition 8¢/dn = 0 over the walls. For the walls z = 0 and z = q,
dy/dn = dy/dx; we thus require that for all values of y

oy _ . _
a} = xBY@) =0, (70a)
%] = —x[A sin (k,a) — B cos («,0)]Y (y) = 0. (70b)

This requires that B = 0 and that «, have the characteristic values

K,:m{, m=012-"--. (71)

Over the walls y = 0 and y = b, d¢/dn = d¢/dy. This boundary con-
dition requires that D = 0 and that x, have the characteristic values

KF%’C n=012 ---. (72)

The characteristic values x,,. for the TH, .-wave are therefore

o (o) - ()

By use of Egs. (18) and (19), the complete set of field components for
the wave in the positive z-direction is found to be

mm¥ nm
H, = cos — cos MY vt E, =0,
a b !
mn MAYmn . [ maT nr _
H, = =7 E, = 27 sin { 770) cos (1T € Ymn?, (74)
Jup K% .a a b

Il

" nwys mrx\ . [nm
H,=1"E, = 72,7 " o (772 ) sin (272 ) e rme,
Jwu k2.b a b

The significance of the integers m, n, is directly apparent: They represent
the number of sinusoids in the intensity of the field components E, and
E., respectively, over the cross section of the guide.

The cutoff wavelength, the guide wavelength, and the transverse
wave impedance for a TE,.,-mode are respectively

VA S — (75)

)G
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Npmn =

-l

mA
2a

@

1

=T

The TE-mode (m =

=) @) )

1, n = 0) has the longest cutoff wavelength. It

[8ec. 7-11

(76)

W)

is by far the most important mode for antenna work. The electric field
has but one component, F,, which is uniform in the y-direction and varies
sinusoidally along the z-direction with symmetry about the central sec-

tion of the guide.

TE-modes are shown in Fig. 7-9.
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The field configurations for this and several other
It will be seen from Eq. (75) that to

Fra. 7-9.—T E-modes in rectangular waveguides: (@) TEic-mode [A @ = 2al; (b) TE11~

mode (A1, = 2ab/\/a?-+ b¥]; (¢) TEz-mode [A20'? = a]; (d) TEn-mode (Ao1'? = 2b),
electric field; ——~—— magnetic field.

ensure propagation of the TE ~-mode alone the dimensions of the guide
must be such that

a <\ < 2q; 2b < A

b. TM-waves.—The solution ¢(z,y) must satisfy the boundary con-
dition ¢ = 0 over the walls. It is evident from Eq. (69) that we must
set A = ¢ = 0 to satisfy the condition over the surface z = 0 and y = 0.
Over the walls z = a, ¥y = b the conditions are satisfied only for the
characteristic values

=27 m=012 - (771)

Ky = n=012---. (7-72)
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Thus the characteristic value k., for the TM ..-mode line, like that of a

TE.,..-wave, is given by
. _ (™) 4 (Y. (7-73)
fmn =\ @ b

The cutoff and guide wavelengths are given by Egs. (75) and (76); the
characteristic wave impedance, however, differs from that of the TE-wave.

It is
14 2 27 4
L (CoRTch) R

(a) o

F1a. 7:10.—TM-modes in rectangular waveguides: (@) TM ;-mode An‘® = 2ab/V/a? + b7;
() TMi-mode [Agf9 = 2ab/\/a.2 + b%. electric field; —— ——— magnetic field.

The complete set of field components obtained by means of Eqgs. (22)
and (23) is

.~ sin (zn_t) sin (u/) e H, =0,
a b

B, = Ym g, = - Mmoo (m_) sin (Ly) s, b (79)
Juwe KonnQ a b

E, = _JJ:" H, = — T;’:Z" sin (an-x) cos (71_‘11)1'21) gz,

There is no mode for which either m or n is zero; the lowest is the TM ;-
mode.- It follows accordingly that a guide designed to cut off the TE-
modes other than the TE;, will likewise not support free propagation
of any of the TM-modes. The field configurations for several of the
latter are shown in Fig. 7-10. .

7-12. Impedance Transformers for Rectangular Guides.—Equivalent
networks have been established for a number of types of obstacles in
waveguides; these can serve to match out the reflected dominant mode
wave set up by the line termination. We shall present here the pertinent
data on elements designed for the TE,-mode in rectangular guide and
shall indicate their applicability. The simplest, from the point of view
of the equivalent networks, are the windows: metal diaphragms inserted
in the cross section of the guide. Typical forms are illustrated in Fig.
7-11.  In the idealized case of infinite conductivity these elements behave
like capacities or inductances shunted across the two-wire transmission-
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line representation of the TF;-mode. Accordingly, in using these ele-
ments it is convenient to treat the line in terms of admittance rather than
impedance. Let ¥ {3 = 1/Z{9 be the characteristic wave admittance of
the TE ;-mode line.! With any arbitrary termination, there exist points
along the line, at quarter-wavelength intervals, at which the input admit-
tance looking toward the load is alternately (1) ¥ = ¥, — jB and (2)
Y =Y, 4 jB. At the points 1 the load susceptance is inductive and a
parallel capacity is required for matching. Points (2), whers the load
susceptance is capacitative, require a parallel inductance. For the

—— ——

f T TRW T
K3 b \ »?\\\
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b—s — —a—
{©) )

Fio. 7-11.—Windows for rectangular guides; (a) symmetrical capacitative; () syvmmetrical
mductive; (¢} asymmetrical inductive; (d) resonant.

former case the capacitative window (Fig. 7-1le), is suited, while for

points 2 the inductive windows (Fig. 7-11b and ¢) are appropriate. For-

mulas and graphs for the susceptance of these and other windows,

referred to the characteristic wave admittance of the THi,~-mode, are

available in the literature.?

In practice the inductive windows are to be preferred, because the
capacitative window, in presenting an edge across the electric-field lines,
is more susceptible to electrical breakdown. Asymmetrical windows
have experimental and design advantages in that only one side of the
guide need be milled for an insertion.? This reduces the amount of
machining required in making test runs on impedance and eliminates the

! We shall drop the mode notation hercafter and write simply Z, and Y, for the
characteristic impedance and admittance respectively.

? Microwave Transmission Design Data, Sperry Gyroscope Company, 1044;
“Waveguide Handbook,” RL Group Report No. 42, Feb. 7, 1944; “Waveguide
Handbook Supplement,” RL Group Report No. 41, Jan. 23, 1945; Waveguide Hand-
book, Vol. 10 of this series.

* W. Bichak, “One-sided Inductive Irises and Quarter-wave Capacitative Trans-
formers in Waveguide,” RJ. Report No. 426, Nov. 17, 1943
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problem of alignment of two halves of a symmetrical window. On the
other hand, symmetrical windows lend themselves to use as pressuriza-
tion devices; the two metal borders can serve as supports for a thin
dielectric sheet. Such a sheet introduces an additional capacity in
parallel with the window, the magnitude of which depends on the thick-
ness and dielectric constant. No systematic design information seems
to be available on this point at present, and the design of the pressurized
window must be developed experimentally.

The circuit equivalents of the windows immediately suggest the pos-
sibility of combining a capacitative and inductive window to make the
net susceptance zero, that is, to produce a resonant device that introduces
no reflection in the guide. Such a resonant window is illustrated in Fig.

v T A i
¢ b : b
—._ .y

-—a——-‘ —l

@ Generator Load
)

F1g. 7-12.—Step transformer in rectangular waveguide: (a) transverse cross section; (b)
longitudinal cross section.

7-11d. To a first approximation, the dimensions §,., §. can be so chosen
that the capacitative and inductive susceptances are equal in magnitude.
The resonant window transmits all the incident power and, therefore,
cannot be used as a matching device. It is useful as a pressurizing ele-
ment to seal the waveguide; either the window frame serves as a support
for a thin dielectric sheet, or the open area of the window is filled with a
dielectric block. The dimensions of the window must be adjusted to
compensate for the dielectric; this again must be determined empirically.
It is obvious that true resonance behavior can be achieved at only one
wavelength with a given window.

The use of windows at wavelengths shorter than 3 em is rather limited.
Several difficulties arise due to the decrease in the dimensions of the
waveguide with decreasing wavelength. The most striking of these are
(1) the increased liability to electrical breakdown in the neighborhood
of a window, (2) errors in determining the position of the element, and
(3) the machining and insertion of small parts. For wavelengths shorter
than 3 cm the step transformer, illustrated in Fig. 7-12, is recommended.
This is analogous to the cascade section discussed for coaxial lines. The
characteristics of the step transformer can be expressed in terms of the
input admittance presented at the generator side when the guide is
terminated beyond the seection in a matched load:!

1 Sichak, op. cit., p. 3.
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b\ | 4bF 2rl 2b\? .
Y c» +“r€”“*%‘—(r> Fr+54
— 4 [ g

'=r= 0+ j4) ’ (80)
2bF b 2rl
A —‘)\—F—C—ZCOtTH

The parameters [, b, d are defined in the figure; A, is the wavelength
in the waveguide; and F is a function of d/b alone, a few values of which
are given in Table 7-1. When [ = \,/4, Eq. (81) reduces to

TaeLE 7-1.—F-rFUNcTION FOR STEP TRANSFORMER

1- %, % F-function

0 0

10 0.020

20 ) 0.063

30 0.130

40 0.235

50 0.395

60 0.598

70 0.820

b? . 2bF b2 4b2?
y @&, <1 FEILENY )
Y, = ibiF? : (80a)

Tt

g

To design a transformer from either Eq. (80) or (80a) it is necessary to
construct a graph, based on Table 7-1, from which the required values
of F may be obtained. Over the range of useful values of b/d the section
can be regarded as a quarter-wave transformer with a phase correction
due to the capacitative effects at the junction. The phase correction
makes itself felt in that the load end of the transformer is not placed at
the point of a “voltage’” minimum (the point of maximum load admit-
tance) but is displaced slightly from that point toward the generator.
To a first approximation the matching condition is that the conductance
in Eq. (80a) be equal to the maximum normalized load admittance,

b‘z

&

0= — (81)
4b2F?

1+ X2

aq

The latter directly equals the voltage standing-wave ratio due to the
load. Accordingly it is suggested that the designer prepare for himself
a set of charts of r or g, against d/b over the range of A, with which he
will be chiefly concerned. For a given case the transformer with dimen-
sions determined in the indicated manner can be prepared to slide in tha
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guide, the bottom of the transformer being tinned before insertion. The
transformer is moved along the guide until the best matching position
is located and then soldered into place by heating the outside of the guide.

7-13. Circular Waveguide: TM- and TE-Modes.—Let us consider
next a hollow guide of circular cross section of radius a. As in the case
of the coaxial line we are here concerned with solutions of the scalar
Helmholtz equation in a circular region. The general solutions are the
same as for the coaxial line:

‘iggg = [AJ () + BNn(xr)] cos mé. (7-58)
Here again r, 6 are polar coordinates over the cross section, and m is an
integer. In the present case, since there is no inner conductor, there are
no sources in the interior and the fields must be finite at all points. The
Neumann function, however, becomes infinite at r = 0; accordingly it
must be removed from the solution: B must be equal to zero. The funda-
mental solutions are, therefore,

igﬁgg = AJn(kr) cos mé. (82)

a. TM-modes.—By the boundary condition of Eq. (21b) we require
¢ = 0 at r = a for all values of 8. This leads to characteristic values
&mn Which satisfy the relation!

Jn(kmna) = 0.

The complete set of field components for the TM ,..-mode, obtained from
Eqgs. (22) and (23), are

E, = «2,, cos mOJ n(kmar)e—Tn2; H, =0,
’Ymn (4 —
= -""Hyp = —Ymnkmn COS M8 ) €T
E, Jore [4 Y mnk J o (k ) ) (83)
- . Jm(KmaT
Ey = — Ve H, = mvy,, sin mé ~£‘r—) e Tz,

The field configurations for several of these modes, together with the
cutoff wavelengths, are shown in Fig. 7-13.

b. TE-modes.—The function ¥(z,y) is subject to the boundary con-
dition of Eq. (13): 8y/0r]—a = O for all 8. The characteristic values «u,
satisfy the relation?

Jon(kmn@) = 0. (84)

L For lower 100ts zmn = Kmna of this equation see E. Jahnke and F. Emde, Tables of
Functions, Dover Publications Reprint, New York, 1943, p. 168.
2 For the lower roots zmn = xmaa of this equation see zbid.
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The field components for the general TE,,.-mode are found to be

H, = &%, cos m8J ,,(kpur)e 1mn2; E, =0,
— _ Yme _ ) oy
H, o E, KmnYmn COS MBS L (kput)€ R (85)
mn . J (KT
Hy = ¥ E. = my,. sin m@ I m(kmer) = Ymnz,
Jwp r

These modes are illustrated in Fig. 7-14. On examination of the roots
of the Bessel functions and their derivatives it will be seen that the lowest
mode, that is, the mode with the longest cutoff wavelength, is the TFE,,-

Fia. 7:13.—~TM-mode in circular waveguide: (@) TMor-mode [No:? = 1.31d]; (@)
TMos-mode [Ao2'® = 1.07d]; (¢) TMii-mode A9 = 0.824d].
magnetic field.

mode. This is the mode generally utilized in antenna systems. It isthe
circular guide analogue of the TEj,-mode in rectangular waveguide.
The use of circular waveguide is limited by several factors, of which
perhaps the most significant is instability in orientation of the field con-
figurations. Since the guide has rotational symmetry, the field configura-
tion can be rotated about the z-axis without violating boundary conditions;
there is no preferred direction 8 = 0. Small irregularities in the wall
of the guide or matching windows can cause such rotation of the fields
giving rise to subsequent difficulties in designing the radiating system.
In rectangular guide, on the other hand, the orientation of the field
configuration is uniquely determined by the orientation of the cross sec-
tion. Another difficulty in round guide is mode control over an appre-
ciable frequency band. The radius is the only parameter available to
determine the cutoff wavelength; in rectangular guide, both the dimen-
sions a and b enter into the characteristic values of the higher modes.
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Other comparative factors will be pointed out in the discussion of wave-
guide and horn feeds.

7-14. Windows for Use in Circular Guides.—As with rectangular
guides, metal diaphragms can be inserted into circular guides to serve as
matching devices for the TE,-mode. The circuit equivalents of these
windows are again reactive elements shunted across the two-wire line
representation of the dominant mode. Capacitative windows cut across
the E-lines, while inductive windows cut across the transverse magnetic
field in the cross section. The admittance characteristics of such windows

F1a. 7-14. - TE-modes in cireular waveguides: (a) TEo-mode [Aoi'® = 0.82d]; (b)
TEun-mode (A = 1.71d]; (¢) TEz-mode [A,'? = 1.03d]. electric field; —————
magnetic field.

may be found in the literature on the subject.! There is also available
a resonant window which can be used as a frame to support a thin dielec-
tric sheet to seal the waveguide.

7-16. Parallel-plate Waveguide.—Another type of waveguide that is
used in microwave antennas is that formed by a pair of parallel plates.
The modes can be derived, as in the previous sections, by a direct solu-
tion of the field equations, in the present case for a region bounded by a
pair of parallel perfectly conducting surfaces of infinite extent. It will
be instructive, however, to treat the parallel-plate system as a limiting
case of the coaxial line and the rectangular waveguide.

The parallel-plate waveguide can be derived from the coaxial line

! Microwave Transmission Design Data, Sperry Gyroscope Company, 1944 ;  Wave-
guide Handbook,” RI. Group Report No. 43, Feb. 7, 1945; ““Waveguide Handbook
Supplement,” RL Gronp Report No. 41, Jan. 23, 1945; Waveguide Handbook, Vol. 10
of this series.
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by allowing the radii a and b of the inner and outer conductors to become
infinite in such a way that the spacing b — a between the conductors
remains constant:

b—a=s (86)
It will be recalled that the 7EM-mode is independent of the radii of the
conductors and is supported by the line for all frequencies with a wave-
length equal to that in free space. We thus arrive directly at the result
that the parallel-plate guide supports free propagation of a TEM-mode
at all frequencies. The electric vector is perpendicular to the plates,

Y

F1e, 7-15.—The parallel-plate waveguide as a limiting case of a coaxial line.

and the magnetic vector is parallel to the plates; neither field vector has
a component in the direction of propagation. Taking Eq. (63) for the
electric vector of the TEM-mode and writingr = a + y, b = a + s (¢f-
Fig. 7-15), we find that the magnitude of the electric field is

ro | v 1 2 14 -
ety 48 @ty s &
a a 2a?
Letting ¢ become infinite we obtain
lim (£ = %- (88)
a— © s

The magnitude of the electric-field vector is independent of position
between the plates; the same result is obtained for the magnetic field.
It will be recognized that Eq. (88) is the same expression as for the static
electric field between a pair of plates at a difference of potential V.

Considering next the TE- and TM-modes of the coaxial line we note
vhat as the radii become infinite, the periodicity condition disappears;
that is, we need concern ourselves only with the modes of order m = 0
[Eq. (58)].

T M-modes—The longitudinal component of the electric field [the
function ¢(z,y) in Eq. (58)] is

E, = AJo(kr) + BNo(«r). (89)

Making use of the asymptotic forms of the Bessel functions! for large
(xr), we get

1 G. N. Watson, Bessel Functions, 2d ed., Macmillan, New York, 1945, Chap. 7.



SEc. 7-15) PARALLEL-PLATE WAVEGUIDE 237

14 3
E, = (;j—() [A cos <Ky + ka — g) + B sin (Ky 4+ xa — ;;)J

We have here introduced again r = @ + y. In the limit ¢ = «, the
solution takes the form

E, = A’ cos (xy + 7). (90)

Applying the boundary conditions £, = 0 at y = 0 and y = s, we find
that r = (#/2) + 2mmr and that the characteristic values of the modes are
%"; n=1,2 . (1)

Ky =

Equation (90) can thus be rewritten as

E, = A’ sin (ﬁlsr—y) (92)
The cutoff wavelength for the TM ,-mode is [Eq. (16)]
2s
e} — —
N = (93)

and the guide wavelength for the freely propagated mode [Eq. (17)] is

(94)

The transverse components of the field are obtained from E, by means
of the set of Egs. (4) and (5):

E, = — ;(—yfA/ cos <n_1;y>y E, =0, (95a)
H, = %:ie A’ cos <ZL:—y>, H, =0; (95b)

the constant v, is defined by Eq. (14).

TE-modes.—The derivation of the TE-modes proceeds in a similar
manner. Equation (90) in this case represents the longitudinal com-
ponent of the magnetic ficld; that is,

H. = A’ cos (xy + 7). (96)

The boundary conditions dH,/dy = 0 at ¥y = 0 and y = s lead to the
result that r = +2mr and

(97)
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The cutoff wavelength for the TE,.-mode is given by Eq. (93), and the
guide wavelength by Eq. (94). The complete set of field components is

H, = A’ cos (n%y) (97a)

E. = JOR 41 gin (*TY), E, =0, (970b)
N s

H, = %’A’ sin <L:‘y>, H, =0. (97¢)

It will be recognized that the field distributions and guide wave-
lengths correspond to 7M- and T E-modes of the rectangular guide.
The TM,.-modes of the parallel-plate system are the analogues of the
TM. .-modes, and the TE,-modes are the analogues of the TE, ,-modes.
As the broadside dimension a of the rectangular guide becomes infinite,
the modes of the latter pass into parallel plate modes.

7-16. Design Notes.—Several remarks on design practice may prove
of interest to the reader. These are particularly concerned with coaxial
lines and circular waveguides. Unless an antenna is being developed as
a single experimental model or for production in very limited numbers,
some attention should be given to the production problem or the avail-
ability of parts. With respect to the coaxial lines and circular guides,
dimensions should be chosen as near as possible to those of commercially
standardized tubing. The primary considerations in the choice of
dimensions are, of course, the characteristic impedance of the line and
the control of higher modes; these, however, allow some latitude in
design.

Special care should be taken in the inspection of tubing. FErratic
results in standing-wave measurements on lines have frequently been
traced to irregularities in the cross section of the line. Ridges and waves
are found in the tube wall if the die through which the tubing was
extruded is worn or if the driving unit is faulty. Such ridges and waves
can be detected only by cutting the tube in half. It is recommended that
a sample length of tubing from each new lot be cut down the middle
for inspection before using the material. It is often useful to force a steel
ball of proper diameter through the tubing under pressure, thus sizing
and polishirg the inside surface.



CHAPTER 8
MICROWAVE DIPOLE ANTENNAS AND FEEDS
By S. SiLver

The early trends in microwave antenna design grew out of the prac-
tice of using dipole systems at longer wavelengths. Nevertheless, little
systematic information has been obtained about microwave dipole sys-
tems. This is partly due to the greater difficulty in applying theory to
practically useful microwave dipoles and partly to the urgent military
needs which prevented systematic research during the early development
in this field. More recently, attention has been concentrated on wave-
guide and horn radiators, which are more amenable to quantitative
analysis. Consequently, the design of microwave dipole antennas is
still in the empirical stage; quantitative data are available only with
reference to particular systems.

8-1. Characteristics of Antenna Feeds.—The dipole systems that we
shall consider in this chapter are, with a few exceptions, designed to
serve as primary feeds to illuminate reflectors; it will be assumed through-
out, unless the contrary is noted, that this is the end in view. The
general design requirements and specifications imposed on primary feeds
are the following:

Radiation Patiern.—1It is evident that a primary feed radiation pat-
tern must be directive, with the major fraction of the energy radiated
toward the reflector. We have studied in Chap. 6 the relation between
the radiation pattern of the antenna as a whole and the intensity and
phase distribution over the aperture. The relation between the latter
and the primary pattern will be developed in later chapters on the design
problems of special types of antennas. It may be noted here, however,
that the design of a reflector—or a lens—is generally based on the assump-
tion that the feed is a point source. Deviations of the feed from a point-
source radiator result in phase errors over the aperture of the antenna.

Particular attention must be paid to the phase. It was shown in
Chap. 3 that many idealized radiating systems are effectively point
sources in the sense that the equiphase surfaces constitute a family of
concentric spheres. This situation is realized only approximately in the
case of an actual feed. The pattern of the latter is usually specified in
terms of the principal E- and H-plane patterns (Sec. 3-18). In each of

these planes it should be possible to find an equivalent center of feed,
239
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with respect to which the equiphase lines are circular (to within a pre-
scribed limit of error) over the region to be covered by the reflector.
To minimize the problems of reflector design it is essential that the centers
of feed for the principal planes be coincident. In general, it is desirable
that on a sphere about the center of feed the phase shall be constant to
within +#/8, corresponding to path differences of +X/16; for some
purposes, path differences of +X/8 can be tolerated. The cone within
which the feed is a point source in the sense of these criteria will be referred
to as the point-source cone.

Impedance—Impedance match is required over as broad a frequency
band as possible. An antenna is generally considered to be usable
throughout the frequency band in which the voltage standing-wave ratio
is less than 1.4. Since interactions with the reflector tend to increase
the total mismatch, it is ‘desirable to keep the feed mismatch below the
figure given above.

Power-carrying Capacity.—This is limited by electrical breakdown
which may occur within the feed line and around the feed components
under the peak voltage of a transmitted signal. The effect of matching
devices on breakdown characteristics was noted in Sec. 7-9. The break-
down problem is particularly significant in antennas intended for air-
craft, because the breakdown potential decreases with increasing altitude,
due to the decrease in atmospheric pressure and the increase of free ion
content. Feeds for high-altitude airborne systems must therefore be so
designed that air can be held in the r~f line under pressure. The average
requirement is 10 to 15-1b gauge pressure relative to sea level atmospheric
pressure.

Weather Protection.—Antennas must be protected from the weather
to prevent corrosion and consequent power dissipation in the antenna
structure. Weatherization is an important consideration in shipborne
antennas, which are exposed to sea-water sprays.

Mechanical Strength, Light Weight—Antennas installed in aircraft
and ships are subject to high stresses due to rapid changes in the motion
of the airplane or oscillations of masts of the ship in a high wind. In
aircraft systems, mechanical strength must be attained with economy of
weight.

Reasonable Tolerances—Tolerances should not be so close that pro-
duction methods cannot be used effectively.

8:2. Coaxial Line Terminations: The Skirt Dipole.—The theoretical
prototype of the dipole radiators is the half-wave dipole fed at the center
from a balanced two-wire transmission line. The significant features of
this system are the following:

1. The two wings of the dipole carry equal currents.
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2. The current distribution is determined by the dipole structure,
interaction between the dipole and the transmission line being
negligible.

3. The dipole termination does not upset the balanced condition of the
line.

While it is true that a coaxial line propagating the TEM-mode is equiva-
lent to a balanced two-wire line, it is virtually impossible to make a
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Frg. 8-1.—S8kirt dipole: (a) simple form; (b) tapered gap to improve the impedance
characteristics; (¢) decoupling choke C: to prevent current leakage along the outer wall,

microwave dipole termination that behaves like the theoretical prototype.

The skirt dipole illustrated in Fig. 81 is an example of a coaxial-line
termination that is used extensively at longer wavelengths and to alesser
extent in the microwave region. The two wings of the dipole consist of
the unshielded section of the inner conductor and the folded-back section
of the outer conductor (8 in Fig. 8-1); we shall refer to the latter as the
skirt. If the lengths I;, l,, of the respective elements are each about
A/4, the system approximates a center-driven half-wave dipole. This
termination maintains the radial symmetry of the line; the current dis-
tribution over the wings is radially symmetrie, and the radiation pattern
has the axial symmetry of the idealized system.

It is to be expected, however, that the meridional pattern will differ
from that of the line radiator. One reason for this is the fact that the
current distribution is spread over a finite area instead of being confined
to a line. The currents at different points on a circumference of the
skirt are consequently at different distances from a field point and give



242 MICROWAVE DIPOLE ANTENNAS AND FEEDS [BEC. 8-3

contributions to the field that have correspondingly different phases.
These phase differences are more significant with microwaves than with
long waves, since they depend on the ratio of the skirt diameter to the
wavelength. The pattern is also affected by the finite dimension of the
gap at the driving point; this causes the current distribution along
the length of the dipole to deviate from the sinusoidal distribution of the
line dipole with an infinitesimal gap.

A further major factor is the coupling between the field of the dipole
and the outside wall of the line, which produces a current distribution
down the line beyond the skirt. This current distribution also radiates;
the total pattern arises from superposition of this field and the dipole
field. The pattern rapidly becomes less satisfactory as the current on the
line increases; so the line current must therefore be kept as small as
possible. It can be controlled in part by changing the cavity Cy formed
by the skirt and the outside wall of the line. This region constitutes a
shorted section of line and as such presents at the open end of the skirt
a reactive impedance in series with the dipole and the outer wall of the
line; by making the depth A/4, the reactive impedance can be made
infinite. In practice it is found that best results are obtained with a skirt
of length somewhat less than N/4. Proper operation is obtained only
at the design frequency, since the impedance of the choke C; varies rapidly
with frequency. Improved over-all impedance characteristics have been
obtained by shortening the skirt and compensating for the reduced
physical length of €, by filling it with dielectric to bring the electrical
length up to A/4. It has also been found that more efficient decoupling
between the dipole and the outer line can be effected by means of a second
choke C; mounted as shown in Fig. 81c. The electrical depth of Cs
should again be a quarter wavelength, so that the choke presents an
infinite impedance at the open end. Fxperimentally it is found that the
decoupling is most complete when the separation of C; and C, is 0.15x.

The structure of the gap ¢ plays a significant part in determining the
over-all impedance characteristics of the antenna. Because an abrupt
discontinuity in structure gives rise to a reflected wave in the line, it is
natural to replace the region G in Fig. 8 1la by the tapered structure shown
in Fig. 8:'1b. The increased diameter of the dipole stub also contributes
to maintaining uniform impedance over a larger frequency band (cf.
Sec. 8.5). Further methods of controlling the impedance characteristics,
suchr as decreasing the length I; and loading the stub with a sphere (capaci-
tative loading), will occur to the reader; we shall not dwell upon them
here.

8-3. Asymmetrical Dipole Termination.—The asymmetric dipole
terminations shown in Fig. 82 are designed to give a radiation pattern
with peak intensity along the axis of the feed line. The dipole in Fig.
8-2a is center-fed from a two-wire line. The asymmetry of the termina-
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tion unbalances the current distributions on the inner and outer conduc-
tors of the line, with the result that the two wings of the dipole are not
equally excited. Also, strong coupling exists between the dipole system
and the outer wall of the line, giving rise to radiating currents on the
latter, just as in the case of the skirt dipole. The choke (' remedies the
situation to some extent; with a depth [, of about A/4 the choke presents
at its open end an infinite impedance, in series between the outer wall of
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Fia. 8:2,—Asymmetric dipole terminations: {a) open-end termination; (b) stub-support
termination,

the line to the left of the choke and the region of the line to the right.
This serves to confine most of the outer-wall currents to the region between
the dipole and the choke.

The open-ended termination has poor structural properties. In order
to maintain alignment of the dipole wings it is necessary to fill the termi-
nal region of the line with a dielectric plug. The latter gives rise to
further problems of impedance mismatch and to poor contact between
the dielectric and the conductors, which may lead to electrical breakdown;
the seals generally deteriorate under exposure to moisture and thermal
and mechanical stresses. In addition, radiation from the open-ended
coaxial line distorts the dipole pattern. These defects are absent in the
stub-support termination shown in Fig. 82b. The coaxial line is con-
tinued for a distance I, = N/4 beyond the dipole system and terminated
there in a metal plate. The latter region, known as the terminating
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stub, is again a shorted section of line, presenting a reactive impedance
at the input end. Consideration of the current division at the driving
point of the dipole shows that the stub is equivalent to an impedance
shunted across the gap between the dipole wings. With [, = \/4, this
impedance is practically infinite; electrically the system is equivalent
to an open-ended termination.

The disparity in the currents on the two wings of a stub termination
is even greater than that in the open-ended termination. The dead
wing (or stub) D is excited only by leakage currents which make their
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Fiq. 8-3.—Leakage currents along the line; stub-supported dipole-disk feed without choke.

way through the opening in the outer wall and by coupling with the field
of the live stub L. Asin the case of the open-ended termination, coupling
exists between the dipole system and the center wall of the line. A
measure of the relative excitation of the dipole stubs is afforded by the
intensity of the outer-wall line currents along lines in a plane containing
the dipole axis. Figure 8-3 shows results of line-current studies made on a
dipole system ecarrying a reflecting plate on the terminal stub. The
standing-wave structure in the current is due to some obstruction on the
outside surface at the input end of the coaxial line.

Control of the outer wall currents is achieved by means of the choke
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C (Fig. 8:2b), as in the systems discussed previously. To present an
infinite impedance at its open end the choke should, nominally, have a
depth of A /4. However, because of junction effects at the open end and
coupling with the dipole system,

the optimum value is somewhat 100 <3 : ]
less than A/4. Figure 8-4 shows 90 >
the line-current strength at a fixed 80 N L]
point on the outer wall as a func- N
tion of choke depth for the system £ AN T
studied in Fig. 8-3; the optimum & . *T B ff
depth is 0.23\. Although this § 4L /q
value is strictly significant only g 50 -
for the system illustrated, it has S ]
been found to give good results in 2 40 1]
other dipole systems employing ﬁ 30 [I
chokes; it is a suitable value for the I p
depth of the choke C, of the skirt 207 1z 1
dipole considered earlier. 10 '1 l \ 5

It has been noted that the ol—r——d i 2
effect of the choke is to confine the 0.1 0.2 0.3
outerwall current to the region be- Choke depth f, wavelengths

tween the choke and the end of the  I'i.. 8.4 —Leakage current as a function of
line. This current distribution choke depth.

serves as a linear radiator along the axis of the feed line. From 'the
general considerations of Sec. 3-15 it will be evident that this radiates no
energy in the direction of the line axis; it will, in general, give rise to a
pattern with peak intensity on a cone having its axis coincident with the
line axis. The phase of the line current with respect to the dipole cpr-
rent is determined by the position of the choke with respect to the dipole
system. In combination with a paraboloidal mirror, in which the feed
line lies on the axis of the mirror, the interaction between the dipole and
line-current system produces a phenomenon known as squin{, in which
the over-all antenna beam is pointed, not along the axis of symmetry of
the system, but in a direction making a small angle with that axis. Use
is made of this phenomenon for scanning.

In closing the discussion of the asymmetric terminations, it should be
noted that the input impedances of both the choke and the terminating
stub vary rapidly with frequency. As a result, these structures are
strong contributing factors in the frequency sensitivity of the impedance
of these antennas. In addition, the cut-away region of the line introduces
distributed capacities and inductances. These factors restrict the
usability of the antenna to a narrow frequency band.

8-4. Symmetrically Energized Dipoles: Slot-fed Systems.—The
shortcoming of unequal excitation of the dipole stubs, which charac-
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terizes the terminations discussed above, is eliminated in the slot-fed
systems shown in Fig. 8.5. Both wings of the dipole are mounted on the
outer conductor, in which a pair of slots S 1s milled in a plane normal to
the dipole axis. The inner conductor is short-circuited to the outer
conductor on one side by the post P, which usually is in the line of the
dipole axis but may be inserted at any point along the line in the slotted
region. Both open-ended and stub-terminated systems are used, ana-
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F1g. 8-5.—Slot-fed dipole terminations on coaxial line: (a) open-ended termination; (b)
stub termination.

logous to the systems discussed in the preceding section. The open-
ended type is used as a radiating element in linear arrays (¢f. Sec. 9-8).

The operation of the dipole can be interpreted from various points of
view. Perhaps the simplest picture is that the radiating system is
energized by a voltage impressed across the slot. The origin of the
voltage becomes evident on consideration of mode relationships in the
slotted region. In the absence of the short-circuiting post P we would
have the TEM-mode and possibly higher modes generated in the open-
ended termination or, in the case of a wide slot, generated by the slot
itself. All these modes, however, would be symmetric with respect to
the plane containing the axes of the slots and give rise to no impressed
field across the slot; under these conditions the dipole is not excited.
With the insertion of the post, modes are generated that are symmetric
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with respect to the plane determined by the axis of the post and the axis
of the inner conductor. These modes, when superposed on the preceding
set, must give rise to a field such that the tangential electric field is
zero over the surface of the post. In the case of a narrow slot we can
ignore (for the qualitative picture) the modes generated by the slot itself;
the prime effect of these modes is to relax the cutoff conditions and allow
propagation within the slotted region of some of the modes generated
by the post. The most significant of the latter is the TE;-mode; Fig.
8-6 shows how superposition of the TE;;-mode on the TEM-mode leads

P E=0
TEM E = Emax
Fia. 8:6.—Superposition of the TEM- and TE -imodes in the slotted region of the slot-fed

dipole.

to a field configuration that satisfies the requisite boundary condition
on the electric field in the case of a thin post. The resultant configura-
tion gives a field that is zero along the post and increases with angle to a
maximum value directly opposite to the post. It is readily seen that
this impresses a voltage across the slot, with resulting excitation of the
dipole structure.

The slotted dipole can also be analyzed from the transmission-line
point of view.! The slotted region is conceived as a three-wire trans-
mission line; this is the appropriate representation of a waveguide sup-
porting simultaneous propagation of two modes, just as the two-wire
line represents single-mode propagation. Tt will carry us too far afield
to discuss the general theory of three-wire lines.? The equivalent cir-
cuit representations for the open-ended and stub-terminated systems are
shown in Iig. 8-7a and b respectively, for the case in which the post
lies along the dipole axis. Here Z, is the impedance across the pair of
lines connected by the post; Z. the impedance at the gap opposite to the
pust; Z4 is the input impedance of a dipole having the same wing strue-
ture as in the given system, hut center-fed {rom a balanced two-wire line;
[y is the length of the slot; and ;- the length of the terminating stub.
At the end of the slot the outer lines are short-circeuited, the three-wire
line passing into the two-wire line,

UL Riblet, “Slotted Dipole Impedance Theory,” RL Report No. 772, Nov. 21,
1945,

z28ee 8. 0. Rice, “Steady State Solutions of Transmission Line Equations,”
Bell System Tech. Jour., 20, 131 (19411,
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In the case of the open-ended termination with a narrow slot it is
possible to reduce the system to a two-wire line with appropriate loading,
as shown in Fig. 87¢. The impedance Z» has been taken to be zero;
7, is the characteristic impedance of the three-wire line under the con-
dition that no current is flowing in the central line. It will be seen that

in this particular case the slot con-

e———— g ——— iributes only a susceptance, like a
T short-circuited section of two-wire
J 1? Ch A line. This circuit representation
4 - indicates that the length of the slot
‘f ¢t QB can be so chosen as to matech out

the other reactive impedance ele-
(@ ments involved in the termination.

The slot not only equalizes the
excitation of the wings but also

e S"_'T_—ls“_" serves as a choke element to de-
couple the dipole system from the

. é @‘@ outer wall of the line. The result-
N ga [ ing system is completely free from
! the squint phenomenon associated

® with the asymmetric termination.

In the case of open-ended termina-
tions it is possible to design units
with high power capacity; these

j'f‘s ta"z_:‘l have found application in linear-

array antennas. The stub-termin-

Z, ated units, on the other hand, are
4] L2 more limited in their power capacity
than the corresponding asymmetri-

© cal terminations and have been

Fra. 8-7.—Three-wire line representa- Used in place of the latter only where
tion of the slot-fed dipole: (a) open-ended it isimperative to have a squint-free
termination; (b) stub-terminated line; (c) .
reduced equivalent loading for Case a. system and relatively lower power

levels are acceptable.

8:6. Shape and Size of the Dipole.—The impedance problem has been
a troublesome one with dipole feeds, largely because of the frequency-
sensitive elements—such as the choke, terminating stub, and slot--
needed in making various types of terminations. A certain measure of
adjustment is available in the size and shape of the dipole. The depend-
ence of the impedance of a center-fed dipole on its size and shape has
been the subject of considerable theoretical work.! All of the work

1'S. A. Schelkunoff, Electromagnetic Waves, Van Nostrand, New York, 1943,

Chap. 11; L. J. Chu and J. A. Stratton, Jour. Applied Phys., 12, 241 (1941); R. W. P.
King and D. D. King, Jour. Applied Phys., 16, 445 (1945).
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applies to an idealized system in which the dipole is driven from a balanced
system across an infinitesimal gap; it is assumed that the coupling
between the dipole and line plays no part in determining the current
distribution of the wings. As we have noted above, this condition is
never realized in microwave systems where the dimensions of the feed-
line cross section are comparable to those of the dipole structure.

The theoretical results, however, are helpful in a qualitative way.
The various theories differ in quantitative details concerning the values
of the impedance, but all show the same general qualitative features.
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Fig. 8-8.—Input impedance of spheroidal dipoles with major axis L and minor axis D:
(a) real component or radiation resistance; (b) imaginary component or reactance. (From
L. J. Chu and J. A. Stratton, J. Appl. Physics, by courlesy of the authors and the American
Institute of Physics.)

The curves shown in Fig. 88 are taken from the work of Chu and
Stratton. They apply to spheroidal dipoles, the major axis of which is
designated by L and the minor axis by D.

The curves show the dependence of the real and imaginary compo-
nents of the impedance on wavelength for various values of the ratio
L/D. 1t is observed that in the neighborhood of the resonant point,
which corresponds closely to a length equal to A\/2, the resistive compo-
nent is virtually independent of the value of L/D and is equal to about
70 ohms. The dependence of the resistance on wavelength does not
become marked until the length is considerably larger than the resonant
value. The reactive component, however, is seen to be a decided func-
tion of the frequency. The larger the ratio L/D, that is, the thinner the
dipole, the more rapidly does the reactance vary and the sharper is the
resonant point. Thus, a thin dipole is more frequency-sensitive than a
fat dipole. The dipole dimensions can be chosen such that its reactive
component balances the reactance which is associated with the termina-
tion; this in general will lead to better over-all impedance characteristics
for the antenna than the choice of a dipole that alone has a flat reactance
characteristic. The impedance characteristics of the dipole can also be
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controlled by such processes as top loading with a sphere or other struc-
iure in the same manner as is done at longer wavelengths. Here again
the procedure is entirely empirical, and we shall not dwell upon it any
further.

8-6. Waveguide-line-fed Dipoles.—It is much simpler to feed a dipole
from a waveguide line than from a coaxial line. The technique of termi-
nation is shown in Fig. 8-9. The dipole is mounted on a web that fits

into the mouth of the guide, parallel

to the broad face of the guide and

transverse to the electric vector in

) - the dominant T'Ec-mode. The E-

Fia. 8'9'_D‘p°legf§§:'nm°n O WAYET vector is thus parallel to the dipole,

which is driven by the radiation

incident on it from the mouth of the guide. It is obvious that if the

web is inserted symmetrically, the two wings of the dipole are excited

equally. The taper shown in the diagram serves as an impedance-

matching device; it also improves the radiation pattern in that it decouples

the outer wall of the line from the dipole. The impedance of the system

is also determined by the depth of insertion of the web and the position
of the dipole with respect to the mouth.

8-7. Directive Dipole Feeds.—The design of directive feeds is based
on the principle of interference between dipoles properly spaced and
phased (Sec. 3-17) and on the principle of images (Sec. 5:3). Early
designs utilized the skirt dipole with a reflecting plate and the open-ended
asymmetric termination followed by a second dipole or a reflecting plate.
These designs have very poor structural characteristics; they will not be
discussed here. Stub-terminated coaxial systems and waveguide systems
lend themselves admirably to the construction of directive feeds, the
stub or web providing mechanieal support for the system of dipoles
involved or for the reflecting plate. These directive systems are designed
to radiate maximum power back along the feed line; the reflector that is
to be illuminated by the feed is then also mounted on the feed line.
This rear-feed type of installation (examples of which are to be seen in
Sec. 12-11) minimizes the length of line and the series of bends and joints
required (factors of considerable importance for generator stability) and
forms a compact and rugged system.

The directive system employing a reflecting plate, which may be
termed a dipole-plate or dipole-disk feed, is based on the principle of
images. Inaccordance with the general theory, to produce peak intensity
along the feed line the reflecting plate is mounted a distance A/4 behind
the dipole. The principle of images assumes, of course, a reflecting
plate of infinite extent. In the case of the feed system the plate must be
kept as small as possible. Otherwise the feed will present too extended
an obstruction in the path of the energy reflected from the large mirror;
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the effects of such aperture blocking on the over-all antrnna pattern
are discussed in Sec. 6-7. It is thus necessary to sacrifice a certain
measure of directivity, with the result that the primary feed has a back
lobe, that is, radiation behind the reflector plate; this, too, has a sig-
nificant effect on the over-all antenna pattern (¢f. Sec. 12.5).

The coaxial-line-fed multidipole systems are usually designed so that
only one dipole is excited directly from the line. The other members
(dummy or parasitic dipoles), arranged in a linear array, are fed by
coupling with the directly excited element. Microwave feeds have
usually included a single dummy element to complete a double-dipole
system such as that discussed in Sec. 3-18. In that section the case of
N/4 spacing and relative phase ¢ = 7/2 was considered in detail. How-
ever, by reference to Eq. (3:174) of Sec. 3-18, it may be seen that any
pair of values of spacing a and phase which satisfy the relation

"—;’—g=m7r, m=01,2 -+ -

will give peak intensity along the direction normal to both dipole axes,
that is, along the feed line in the practical case. These other systems,
however, unlike the (A\/4, r/2) system, in general also give rise to a back
lobe in the direction 180° away from the peak. In practice, the phase of
the dummy relative to the driven element is controlled by the relative
dimensions of the dipoles as well as by their spacing; from Sec. 8-5 we
see that it is possible to make one dipole capacitative or inductive relative
to the other, by proper choice of dimensions.

Directive feeds will be further discussed with reference to particular
systems. In the following sections design data are presented on a num-
ber of feeds that have been developed in the Radiation Laboratory and
used extensively. It is not to be assumed that the results given here
represent the ultimate that can be achieved with these systems.

8-8. Dipole-disk Feeds.—Two dipole-disk systems have been devel-
oped, employing respectively the stub-terminated asymmetric dipole
and the stub-terminated slot-fed dipole.

a. Asymmetric Dipole Termination.—Three such feeds have been
designed! to illuminate paraboloidat mirrors, of focal length 10.6 in. and
30-in. aperture, at wavelengths of 9.1, 10.0, and 10.7 cm respectively.
Details of the feed assembly are given in Fig. 810. The line has a
characteristic impedance of 46 ohms; its dimensions are outer conductor,
OD = 0.875 in. with wall thickness of 0.032 to 0.035 in.; inner conductor,
OD = 0.375 in. Reasonable directivity was obtained with a reflector
plate with diameter about 0.8\. The principal E- and H-plane feed
patterns are shown in Fig. 811. The peak intensity of the pattern is

' 8. Breen and R, Hiatt, 1 I, Report No. 54-23, Junc 21, 1943,
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Fig. 8-11.—Primary pattern of dipole-disk feed: (a) H-plane; (b) E-plane.
dipole-disk feed of Fig. 8-10; — - - -~ theoretical pattern of a dipole at a distance A/4 from

an infinite plane.
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directed along the feed line, and the data in this region are, therefore,
somewhat uncertain. The dotted portion of the curves have been
obtained by extrapolation. It is observed that the E-plane pattern is
not symmetrical. This is due to the fact that one wing of the dipole is
excited more strongly than the other in the asymmetric dipole termina-
tion, as was pointed out in Sec. 8:3. The peak appears on that side of
the axis which corresponds to the dipole wing carrying the major portion
of the current. The H-plane pattern, on the other hand, was found to
be accurately symmetrical corresponding to the symmetry of the dipole
structure in the plane. For comparison, there are plotted the theoretical
patterns for the ideal system of a dipole placed A/4 in front of an infinite
reflecting plane. It is seen that the feed pattern is considerably more
directive; the gain of the feed is found to be equal to 7.

The E- and H-plane centers of feed are coincident, lying between the
dipole and the disk, somewhat nearer to the latter. The point-source
cone is more than adequate to cover a mirror with dimensions given
above. The unpressurized feed has a peak power capacity of 350 + 35
kw. With suitable matching transformers it has been possible to realize
an impedance characteristic for the composite system (feed and para-
boloid) such that the standing-wave ratio r did not exceed 1.23 over a
band of +3 per cent about the matching frequency.

b. Slot-fed Termination.—A unit designed to operate at a wavelength
of 9.1 em with a paraboloidal mirror of 3.6-in. focal length and 12-in.
aperture is illustrated in Fig. 8:12.! The line has a characteristic imped-
ance of 45 ohms, with an inner conductor of % in. diameter. The smaller
line was used here to reduce weight, the power requirements on the feed
having been smaller than in the preceding case. It will be noted that
the disk diameter here is about 0.53X. The system has a single center of
feed for both principal planes and is completely free from squint. The
composite antenna made up of the feed and the mirror indicated above
has an impedance band of +1.25 per cent about the design frequency
over which » < 1.23.

8.9. Double-dipole Feeds. a. Coaxial-line-fed System.—Such a feed®
1s illustrated in Fig. 8-13; it is a lightweight unit employing a %-in. line
like that discussed in Sec. 8-8b. The spacing between the dipoles is very
nearly \/8; correspondingly, the parasite element is longer than the driven
element in order to produce the proper phase relationships. This sys-
tem, like those discussed above, has a unique center of feed. An antenna
consisting of this feed and a paraboloidal reflector of 3.6-in. focal length
and 12-in. aperture has a standing-wave ratio r < 1.23 in a band of +1
per cent about the design frequency.

' W. B. Nowak, RL Report No, 54-26, July 5, 1943.
2 Ibid.
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b. Waveguide Systems.—A doubie-dipole feed built up on a waveguide
termination for use at a wavelength of 3.2 cm is shown in Fig. 8-14.!
The two dipoles are mounted on the web so that their axes lie on the
plane of symmetry of the guide. The spacing between the dipoles is

. 1
Material 1 x3x 0.05 wall Cut out V to dimensions as
rectangular tubing given, bend, and hard solder.
Bevel end to make it square.

Mill after
0.125 solderinﬁg

T T L + 0.002
Hard solder —> 0.250
0.250
These angles
ust be equal

[ . U 0652

0.576
Fig. 8-14.—Waveguide double-dipole feed; A = 3.2 cm.

about A/2.5; again the coupling (and hence the relative phase) of the
elements is adjusted by the suitable choice of their relative dimensions.
The radiation pattern has an appreciable back lobe which is in some
measure due to the guide itself; this is reduced by tapering the terininal
region as shown in the figure. The E- and H- plane centers of feed are
not concident; however, their separation is negligible for most purposes,
and the equivalent center of feed can be taken to be located just behind
the first dipole.

We have previously pointed out the dependence of the impedance on
the taper, depth of insertion of the web, and the dipole factors. To
obtain reproducible results, special care must be taken to remove excess

UW. Sichak, “Double Dipole Rectangular Wave Guide Antennas,” RL Report
No. 54-25. June 26. 1943
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solder at the base of the dipole and at the seams between web and wave-
guide. Antennas made up of this feed and paraboloidal mirrors of
18-in. aperture and focal length either 4.5 or 5.67 in. have a bandwidth
of +1.5 per cent over which r < 1.23 if the antenna is matched by an
inductive window at A = 3.2 cm. The unpressurized antenna has a peak
power capacity of 375 kw, corresponding to 50 kw at 50,000-ft altitude.

8-10. Multidipole Systems.—The web termination on a waveguide
provides a convenient base on which to build multidipole systems in the
form of two-dimensional arrays. Two such arrays have been designed

=%

F1a. 8-15.—Four-dipole feed.

for the 3-cm band, one a triangular array of three dipoles, the other a
rectangular array of four dipoles. Only the latter has been used in final
antenna design. The four-dipole array shown schematically in Fig.
8-15 can be regarded as a pair of the double dipole units discussed in Sec.
8-9b, separated by a distance of approximately \/2. Each double-
dipole unit can be replaced by its equivalent point source, reducing the
system to two directive sources in phase, spaced \/2 apart. It isevident
that no appreciable change is to be expected in the E-plane pattern.
The H-plane pattern, however, must be multiplied by the directivity
factor of two isotropic sources in phase and with A/2 separation. This
factor 1s readily found to be [cos (x/2 cos ¢)]* where ¢ is the angle with
respect to the axis in the H-plane. Hence if Py(¢) is the H-plane pattern
of the double-dipole system, the pattern P.(¢) of the four-dipole system
is given closely by

Pu($) = Py(9) [eos (g cos ¢)]



CHAPTER 9

LINEAR-ARRAY ANTENNAS AND FEEDS

By J. E. Eaton, L. J. Evces, aND G. G. MACFARLANE

9-1. General Considerations.—The technique of producing directive
beams by means of arrays of radiators that are suitably spaced and driven
with appropriate relative amplitudes and phases has been used widely
at the longer wavelengths. These arrays have generally been in the
form of two-dimensional lattices with the possible addition of a reflecting
surface to confine the radiation to a single hemisphere in space. In the
microwave region, attention has been confined almost exclusively to the
one-dimensional, that is, linear, arrays. The wavelength advantage
becomes evident at once, for with economy in physieal size it is still pos-
sible to have an array that is long measured in wavelengths and hence
highly directive.

The arrays that have been designed to date can be grouped into two
general classes: (1) end-fire arrays producing a beam directed along the
axis of the array and (2) broadside arrays producing beams the peak
intensity of which is in a direction normal to or nearly normal to the
axis. End-fire arrays have proved to be particularly useful where it is
necessary to mount an antenna close to an object; for example, such arrays
have been mounted along a gun barrel in airplanes to furnish gunfire
range information and to serve as gunfire directors. Axially symmetrical
broadside arrays which produce beams symmetrical about the axis have
been designed for use as beacons; installed both in ground or ship and
on aircraft they provide a communication system between ground (or
ship) and aircraft. The paiterns of these arrays are axially symmetrical
like the dipole patterns but have increased directivity in the meridional
plane to give increased range. Other types of broadside arrays have been
developed whose beams have a fair measure of directivity also in the
plane perpendicular to the array axis. In a few cases, arrays of this type
have been used as the terminal antenna system; more frequently these
arrays have been used as line sources for illuminating cylindrical reflectors,
in which case the reflector is placed sufficiently close to the array so as
to be in its cylindrical wave zone.

While there is no fundamental difference in principle between long-

wave and microwave arrays, the microwave arrays present problems of
257
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their own which are due to the wavelength region involved. In long-
wave arrays it is possible to isolate to a large degree the feeding of one
element of the array from another. Microwave arrays must be built
on coaxial line or waveguides with the result that the feeding of the
element becomes a mutual interaction problem. This type of feeding
also requires special designs in the radiating elements of which there is
quite a variety. at microwave frequencies. The physical size of the
radiating elements is generally small, and tolerance problems are asso-
ciated with microwave arrays that are generally uncommon at longer
wavelengths,

The problems and techniques of linear-array design have been divided
in this chapter into three general parts. The first concerns itself with
general pattern theory, that is, the relation between the far-zone pattern
of an array and the amplitude and phase distribution among the elements
and their spacing; in this section no attention is paid to the problem of
realizing a given amplitude and phase distribution. The second part is
a survey of the radiating elements that have been developed for micro-
wave arrays. The final division treats the problems associated with
combination of the elements into linear arrays and the techniques avail-
able to produce the desired amplitude and phase distributions.

PATTERN THEORY

9-2. General Array Formula.—A linear array is a specialization of the
general space array discussed in Sec. 3-19. The space factor of the system
can be obtained immediately from
4 Egs. (3-179) and (3-180) by impos-
/ ing on those equations the simpli-
/ fications gained in working with
/ a one-dimensional rather than a
~ three-dimensional complex. It
/ ™ may be instructive, however, to
A N »  derive the space factor directly
et AN / from the superposition of fields;
~ we shall be concerned only with

L5 B ) R TR the far-zone field of the array.
F16. 9-1.—Difference in distance from the Suppose that there are n ele-
ith element and from the pole to a distant ments in the arrav under consider-

point in the direction 8, ¢. . N .

ation, and let the reference line of
the array be taken as the polar axis. The ordering of the elements P, P,
.. ., P._1isshown in Fig. 9-1 with the element P, taken at the origin;
the distance between two adjacent clements is s.  Let us consider the field
at a point (R, 8, ¢) in the far zone. According to Eqs. (3-168a) and
(3-168b) the field due to the 7th element at a distance r; from the element is
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Eo = — 72 etu(0,9),
By = — 25 e Fu(0,4).

If the customary far-zone field approximations are made, r; can be set
equal to K in the denominator, while in the phase term we have

ri =R — iscos @ (1)

as shown in Fig. 9-1. The component fields are then

Bo = = g 00", (20)
v IS g i
Enﬁ. AR e’ P-i(ey‘b)e ’ (2b)

where . is the phase difference between the ¢th element and the origin
due to the difference in path length to the field point:

_ 2mis cos B

g = SIS ®3)

The elements of the array are identical in structure and carry similar
current distributions. They differ only in the amplitude and phase.
We can, therefore, write

Fll'(oyd)) = Q¢F1(0,¢), (4(1)
1"2«;(9#’) = aiF2(01¢)' (4b)

The complex coefficients a; express the amplitude and phase of the ¢th
element with respect, say, to the zeroth element; they will be called the
“feeding coeflicients.”

By the superposition principle, the field of the array is

n—1

Ea _ _ i%;;? efz'kRFl(e,d’) z al_e]('hriscoa 0)/)\’ (50,)
1=0
n—1

Ed, _ _ i];.ig e*J.kRF2(07¢) 2 aiejgznam.avx_ (5b)
i=0

The last two factors in each instance represent the corresponding space
factor of the array. The power pattern is proportional to the sum
of the squares of the absolute value of the two space factors; that is,

n—1 n—1

2 2

P8,6) = ]},]<07¢) 2 aseiemis meﬂy + lF2(0’¢) 2 e cosa)/xl .
i=0 i =0
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Since the absolute value of a product is the product of the absolute values,

n—1
2
P(g’¢) = [|F1(0,¢),2 + IF2(07¢)]2] Z al_e]-(zﬂa coso)/hi ,
=0
or
n—1 .
P(ﬁ,d)) - PO(B;d’) z a’_ejdrﬁcosﬂ)/)\ . (6)
i=0

The first factor is the power pattern of an individual element of the
array. The second factor depends on the number of elements in the
array, their amplitudes and phases, and their spacing. It is formally
independent of the type of element used, although in practice the value
of the feeding coefficients a; is intimately connected with the character-
istics of the elements of the array. We shall call this function the
“array factor” and denote it by ¥(6).

n—1
\I,(o) - lz aie]'(Qrisco-a)/ll“. (7)
1=0

This factor is the power pattern of a similar array of isotropic radiators,
for which Po(6,¢) = 1. Moreover, it is independent of ¢ as was to be

expected.
If the feeding coefficient a; is written as

a; = [atle”fi,

the array factor is seen to be the square of the magnitude of the resultant
of n vectors; the magnitude of the /th element vector is [a;] and the angle
between it and the zeroth-element vector is x; + ¥;. The angles between
the vectors vary with the angular position ¢ of the field point, with cor-
responding variation in the resultant vector. In general as 8 covers the
entire range from # = 0 to # = =, the magnitude of the resultant passes
through maximum and minimum values. The absolute maximum value
that could be attained by the resultant is the sum of the vectors when they
are colinear and in the same direction. With arbitrary x;, however,
there may be no angle 6 for which this condition is realized and the
maxima are less than the absolute maximum. Similarly, there may be
no value of ¢ for which the minimum value of the resultant takes on the
absolute minimum value of zero. However, with special relations
between the yx; it is possible to have directions 8 for which the path-length
phases ¥; compensate for the intrinsic phase differences x; between the
elements to bring all the component field vectors in phase; in this case,
the absolute maximum resultant is attained.
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A particularly simple and useful case is that in which the coefficients
a; are all real. This implies that the angle between any two vectors
associated with adjacent elements is (2rs cos 6)/A.

If the coefficients a; are equal, it is readily apparent that the resultant
vector is 0 whenever the vectors constituting the sum permute among
themselves under a rotation of less than 2r. For then the resultant
vector both rotates and remains unchanged and hence is 0. This occurs
whenever (2rs cos #)/\ is any integral multiple of 2r/n less than n.
When (27xs cos 6)/N = 2x, the vectors obviously reinforce one another
and an absolute maximum results.

Whenever ¥(8) = 0, then Eo = E, = P(6,¢) = 0 [Egs. (5a), (5b),
and (6)] for all values of ¢. The surface in spherical coordinates for
which 6 is constant is a right circular cone. The cones on which ¥(8) = 0
are commonly called cones of silence.

9.3. The Associated Polynomial.—The vector representation of the
array factor provides a method of rapidly analyzing the simple arrays
frequently encountered in practice. Vector language is not, however,
well suited to a more general study of arrays. An alternate method has
been developed! that associates a polynomial with any linear array.
The array factor may be completely analyzed in terms of properties of
this polynomial.

Let z be the complex number z = z + jy. The polynomial associ-
ated with the linear array of elements having feeding coefficients a; is

f@ =a+az+ -+ a2t

The value of the polynomial for the complex number

= { = ¢ilracos /N

is the sum entering into Eqs. (6) and (7); the array factor is thus the
norm? of the associated polynomial for z = ¢,

¥(0) = [f()]% (8)
The complex number { is a vector from the origin in the complex plane,
of magnitude unity, making an angle ¢ = (2ms cos 6)/\ with the real
axis. As @ varies z = { describes a circle of unit radius about the origin.
In the future we shall not distinguish between z and ¢; it is to be under-
stood that z lies on the unit circle whenever ¥(8) is to be computed from
the associated polynomial. When 6 = 0, ¢ = 2zrs/A. As 6 moves
toward 7, z moves along the unit circle clockwise toward the point where
its angle ¢ = —2xs/A. In that interval z may traverse but a portion of

1S. A. Schelkunoff, ‘A Mathematical Theory of Linear Arrays,” Bell System Tech.
Jour., 22, 80 (1943).

2 The norm of a complex number as used here is the square of its absolute value.
It may have a more general meaning.
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the unit circle or may complete several circuits of it depending on the
value of 5. Its path will be referred to as the range of :. In Fig. 9-2
the range of z is shown for three values of s. Since the angular distance
traversed by z is 4ws/\, the range of z is exactly one circuit of the unit
circle when s = A\/2, is less than one circuit when s < \/2, and is more
than one circuit when s > A/2.

0 0337
0.337
0
0.50
0.67m
3 0677
=A —A
s=2 §=3

F16. 9:2.—The portion of the unit cirele in the complex plane that is the range of z.
The real axis is horizontal. The figures on the perineter show the corresponding valies of
¢ for certain values of z.

Any polynomial can be expressed as a product of linear factors. In
particular the associated polynomial may be written in the form

J@) = a1z —2) (2 —2) - - (2 — zasa). (2

Since the feeding coefficients give only the relative phases and amplitudes
of the elements of the array, a._. can be taken to be any convenient non-
zero number. The complex numbers z; (known as the ‘“zeros” of the
polynomial) are unaffected. Their values depend only ap the set of
ratios ¢:/a.—1. The factorization of f(z) in Eq. (9) lends itself to a simple
geometric interpretation of the array factor. Since the norm of a produect
is the product of the norms, Eq. (9) may be written

V() = |z — z:f*e — 22| - - - fz — 2.4

for z on the unit circle. The zeros of f(z) are well-defined points in the
complex plane but do not necessarily lie on the unit circle.  For any value
of z, |z — z:{? is the square of the distance between the point z and the
point z;. The array factor is then the square of the product of the dis-
tances of n — 1 fixed points to a variable point moving on the unit eircle.
It is immediately obvious that ¥(8) = 0 if and only if some z; lies on the
unit circle within the prescribed range of z.  Shown in Fig. 9-3 is the range
of z when s = A/4. The zeros of f(z) are shown for the case n = 9 and
ay=a; = * - = a,1 = 1. The array factor then vanishes for four
values of 8 and attains a maximum value at three points, each lying
between an adjacent pair of nulls. The predominating influence on
the value of ¥(9) is the distance from the corresponding value of z to the
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nearest zero of f(z). In this connection it should be noted that the

zeros of f(z) lying outside the range of z have for the most part but small

effect on the relative value of ¥(6). For the case illustrated, the point

z = 1 (corresponding to 8 = =/2)

is farthest from a zero of f(z), and

one would expect, as is the case, 0.337

that ¥(8) has an absolute maxi-

mum at § = r/2. Thisisdirectly

evident from the vector view-

point of the previoussection. The

elements themselves are all in 050w

phase, and in the direction 6 = »/2

the distance is the same from all

the elements to the field point.

The contributions from the ele- 0671

ments in that direction are, there-

fOI‘(?, n phase, a'nd th.e vectors are Fia. 9-3.—?1:he location of the zeros of

all in the same direction. fz) =1 4+z+224+ - -+ +2z. The range
It is frequontly advantageous 517 812 = /4 istioshoms ogeherwicha

to separate from the relative phase

xi of each element as expressed in the coefficients a;, a constant-phase

delay ¥, between each pair of adjacent elements. This is equivalent to

writing

0

a; = d'.e—z(nl«o),

where now the angle of d; is the deviation from —#, of the difference in
phase between the ith element and the element with index 0. Let

Z = ¢z, (10)

then f(2) transforms into the polynomial

i) = 2 az. (11)

i=0

When z lies on the unit circle, Z given by Eq. (10) does likewise, and we
have f(z) = f(2). Since Eq. (10) is equivalent to a rotation of the com-
plex plane through an angle ¥, in the clockwise direction, the array factor
may be computed from the zeros of f(Z) in the same manner as before
save that the range of z is the original range of z rotated clockwise through
the angle ¢, (Fig. 9-4). Symbolically

v(6) = [f(2)%
where
z = ej[(2rscoe 8)/h—vu]
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The association of a polynomial with any linear array of prescribed
spacing provides a simple and elegant method for compounding array
factors. Suppose ¥(6) and ¥,(f) are the respective array factors of two
arrays with the same spacing.
If fi(z2) and f.(z) are the asso-
ciated polynomials of the arrays,
then the array whose associated
polynomial is

J@) = f1(2)f2(2)
will have as its array factor
\I/(B) = ‘1’1(0)‘1’2(0); (12)

for, as has already been observed,
the norm of a product is the prod-
uct of the norms. Explicit
values of the feeding coefficients
Fic. 9-4.—The range of 7 due to the con- of an array whose array factor is
stant phase delay yo =n/2 for s =)/4. given by Eq. (12) can thus be ob-
The dotted curve indicates the range of z tained b . 1 ltiolvi t
associated with that of 2. The figures on the AIne y simply multiplying to-

perimeter indicate the corresponding values gether the polynomia,]s f1(z) and
of @ for certain values of z and z. f (z)
2 .

0.507

9.4. Uniform Arrays.—A linear array that is made up of elements
having equal amplitudes and a constant-phase difference between adja-
cent ones is of considerable importance. Such an array is called a “uni-
form array.” Its feeding coeflicients are

a; = ¢,
Although the associated polynomial of a uniform array will in general

have complex coefficients, the related polynomial f(£) may, as was shown
in the previous section, be used with equal effectiveness. Then

i@ =14z+22+ - - 421,

where
Z = ¢ivz, (9-10)
But
- 1 znlz —_ z~u/2
5) — — 5D s .
J@ = 1 =
The array factor is then
o V2 _ 3—n’22 _ .
YO = [z G|y 2=
with
2mrs
v = cos 6 — . (13)
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However, || = 1 and |e™¥ — ¢77¥|? = 4 sin? ry. Thus the array factor

of a uniform array is given by
sin? g ¥

YO = rint i 1)

together with Eq. (13). The number n? has been inserted in the denomi-
nator as a normalizing factor.

When ¢ = 2kr and £t =0, +1, 2, - - -, ¥(6) is indeterminate.

It can be readily shown, however, that it approaches the value unity at

those points. The corresponding values of # are given by
cosﬂ=§:—s(2k1r+|[/o) k=0, 1, +2, - - = ).  (15)

For every real value of 8 satisfying Eq. (15) ¥(8) has an absolute maxi-
mum. In these directions the differences in phase between the vector
contributions of successive elements that are due to differences in path
to the field point just compensate for the intrinsic phase difference between
the elements. The contributions are then all in phase, and we have,
therefore, an absolute maximum equal to the sum of the lengths of the n
vectors. For values of s < \/2, however, there will be values of ¢, for
which Eq. (15) has no real solution.

Since ¥(8) is never negative, its absolute minima will occur when
¥(6) = 0, that is, for any value of 8 satisfying

N [ 2kw
cosﬁ=%(7+¢/o) k=0,%1,+2---) (16)

other than those satisfying Eq. (15); for at those points the numerator
in Eq. (14) vanishes while the denominator does not. The points 8 = 0
and ¢ = = may also be minimum points. Certainly ¥(6) is an extremum
at each of these values because it has the period 2r and is symmetrical
with respect to the line § = 0.

No other minima of ¥(6) exist.! The maxima, other than those given
by Eq. (15), will occur close to the point where the numerator in Eq. (14)
reaches its maximum value of unity; for the numerator is changing much

1 Differentiate ¥ (8) with respect to 6.

. n
sin - ¢ _ _
wio = 2 g b () -2 b (25 0) ] (- 2o,

n? sin? 3y A

The points at which sin n¢/2, and sin ¢ vanish have already been examined. The
only other critical values can arise from the factor

n—1. n+1 n+1 . n—1
3 sm( 0] |/;)— ) sm( ) ll')-
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more rapidly than the denominator. An excellent approximation then
for the remaining maximum points of (6} is

A [(2k + 1)

cos § =
27s n

7r+'//o] k= %1, 42, - -)

in which values of k divisible by n are excluded.
Figure 9-5 shows ¥ as a function of ¢ [Eq. (14)] for n = 12. For this
functional dependence ¥ has the period 2r and is symmetrical with respect

Q

10

20 [\ N A } —
30 \’ ‘
| |
401 ‘
0 %f w 3?” i

Y ——

(sm2 '21 \p)

Fi1c. 9-5.—The function wrsin® 39)

forn = 12,

to the line ¢ = 0. An idea of the shape of the array factor for various
values of s/A and ¥, may be obtained from the graph. Because

_ 2xs cos @

¥ N~ " Yo (9.13)

This function, however, is monotone in any region between adjacent solutions of
Eq. (16) because its derivative is

n2—1 . n . 1
5 smiwsmidz.

Thus it can vanish no more than once in the region whose end points are successive
roots of Eq. (16).
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the portion of ¥ that represents the array factor lies in the region for
which

2 2
~ - S Y <T e

Thus the values of ¥ that determine the array factor extend over an inter-
val of length 4ws/A; this may be less than the period of ¥ or several of its
periods.” In the language of Sec. 9-3 the range of z (whose angle is ¥)
may be less than one circuit of the unit circle or several circuits.

9-6. Broadside Beams.—A linear array whose form factor has its
absolute maxima only in directions normal to the axis of the array is
known as a “‘broadside array.” The array factor of such an array should
then have a single absolute maximum in the direction 6 = =/2. The
power pattern of the radiating element employed will, of course, deter-
mine whether, among other possibilities, the array will have a single
direction of maximum intensity in the plane § = 7/2 or its intensity will
be maximum in every direction in that plane. Both of these types of
arrays have widespread application; the latter is sometimes called an
omnidirectional antenna.! In the microwave region the principal use
of these antennas is as beacons, and in the following sections all such
antennas will be referred to as beacons.

We have seen that the array factor for a uniform array has absolute
maxima for the values 8 satisfying the relation [Eq. (15)]

c0s0=? = k=0, 1, £2, - . - ).

H
This will have the solution § = x/2if ¥, = 0, and it will be the only such
solution if s < N\. Arrays in which the elements all have the same ampli-
tude and phase (fy = 8) are commonly referred to as uniformly llumi-
nated arrays. For the moment let attention be restricted to the case
s = A/2. It will be shown later that this restriction is desirable. The
array factor is then, from Eq. (14),

. [nw
sin® (? cos 0)
) = ———% (17)

n? sin? (g cos €>

Equation (17) is plotted in Fig. 9-6 on a decibel scale forn = 6 and n = 12.

It will be observed that the side lobes (secondary maxima) on either
side of the main beam decrease. Moreover, on the decibel scale used in
Fig. 9-6, a straight line joining any two peaks on the same side of the main
beam lies entirely above any intervening peak. That this is always true

'Tt should be remembered, however, should this usage be encountered, that
“‘omnidirectional” means all directions in a plane.
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may ke verified by noting that the peaks of the side lobes lie approxi-
mately on the curve
1

n? sin? (7—; cos 0)

The second derivative of In ¥, with respect to 6 is

T oese2 (T in? v .
T [2 csc (2 cos 0> sin? 8 + cot (2 cos 0) cos 0]

\I/o=

0
/|
5 ! ‘
db 1 ———6 element array
It ——-12 element array
lw 11
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| |
15 AN T VA
/\ [ )
AR TN f \
2 / \'I N ‘ il \'/
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T | | | ]
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[sin2 (lg cos 0)]
Fia. 9-6.—Graphs of =—————————~— for n = 6 (full curve) and n = 12 (dotted

EeT)

curve).

This is positive in the interval on either side of the main beam; hence the
peaks of the lobes on each side of the main beam lie on curves that are
concave upward.

Direct computation shows that the height of the first side lobe, that
is, the one nearest the main beam, varies from 0.056 for n = 6 to 0.047
for n = 12 and 0.045 for all sufficiently large n. The height of thc last
side lobe is 1/n? for odd » and approximately that for even n.

If the sine appearing in the denominator of Eq. (17) is replaced by its
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argument, an approximation for the half-power width of the array factor
may be obtained namely,

~101.8°,

T oon

)

An indication of the magnitude of the error is contained in Table 91 in
which both the actual half-power widths and those computed by the
approximate formula are given.

TABLE 9-1.—MAGNITUDE OF ERROR RESULTING FROM THE USE OF THE APPROXIMATION
FOR THE HALF-POWER WIDTH

n 2 3 4 5 6 12 50
10111'8 50.9 33.9 25.4 204 | 16.97 | 8.48 | 2.036
e 600 | 36.3 | 2.3 | 208 | 1719 | 850 | 2.03

The relatively large height of the first side lobe is characteristic of a
uniform array and at times may be annoying. Broadside arrays may
readily be formulated, at least in theory, that have side lobes as small as
desired. For example, consider an array whose associated polynomial is

f(z)=(1+z+z2+ <o Fogm1)2
f(z)=1+22+ s memTl - e e o 222m3 L p2m—2

The elements are all in phase, but their amplitudes decrease uniformly
from the central element. This is a special case of what is commonly
called a gabled illumination. Its array factor is the square of the array
factor of a uniform array; hence its first side lobe will have a height of
but + per cent of the height of the main beam instead of the 5 per cent
height of the uniform array. All of the other side lobes will be reduced
in a similar fashion, but the main beam will be somewhat broader than
the main beam of a uniform array with the same number of elements.
The half-power widths of the gabled and uniform arrays are approxi-
mately 146°/n and 102°/n, respectively, where n is the number of ele-
ments. Successively higher powers of the polynomial may be computed;
the reduction inside lobes is accompanied by a rapid growth inbeam width.

A general discussion of the problem of constructing high-gain broad-
side arrays with side lobes below a preseribed value will be given in
Sec. 9-7. Attention may be called here to an array that eliminates side
lobes completely. The feeding coefficients are equal to the binomial
coefficients

or

rl!

Cok = pir = w1

(18)




270 LINEAR-ARRAY ANTENNAS AND FEEDS [Sec. 9-5

The array is derived from the two-element half-wavelength-spaced uni-
form array. The latter has an array factor

¥(f) = cos? (g cos 0);

| : ~ m/ \(\ @
DO
s

10 30 50 70 90 110 130 150 170

g—

40

Fre. 97.—Array factors for three 11-element A/2-spaced arrays: (a) the uniform array

. 11 2
s ) ™ cos 6 sin (37 cos @
—————— =] ; (h) the gabled array |:7“,¥'

11 sin (g cos B) 6 sin (g cos 6)

4
] ; (¢) the ' binomial" array

[ (3 ) ]

this has no side lobes and has nulls at 8 = 0 and ¢ = ». Its associated
polynomial is

J&) =1+ =z
From Eq. (12) it follows then that the array whose polynomial is
f@ =0+ =Co+Chz+Cot®+ -+ - + Cr”

has an array factor

¥ = cos? <1—2r cos 9>~

An inspection of the three space factors given in Fig. 9-7 shows that, of
the three, the uniform broadside array concentrates the greatest per-
centage of the radiated energy in the direction normal to the array. It
can be readily shown that of all arrays in which the elements have the

same phase and the spacing is%the uniformly illuminated array has

the maximum gain. Let



SEc. 9-5] BROADSIDE BEAMS 271

be the polynomial associated with an arbitrary array of n elements,
normalized so that f(1) = 1.

Since the elements are spaced a half wavelength apart, z = e/mcm?,
The gain G in the direction 6 = n/2 (which corresponds to z = 1) is
given by

G =—5- ﬂfi——; 2 = gimeoet
ﬁ) /0 |f(2)|? sin 6 d6 d
or
2
where
I-= / (2|2 sin 6 de. (20)
0

To maximize G, I must be minimized. In Sec. 9-7 it is shown that there
is no loss in generality by assuming that f(z) has real coefficients. If we
let ¢ = cos 4, then Eq. (20) becomes, after expansion,

1 \ . n n—1
I = (i / <2 a? + Z C, cos rmlf>d¢,
S‘ - [4] r=1

- =

r=
—
r=0

where the numbers C, are combinations of the polynomial coefficients a.

Hence
n—1

2\ a?
I=—17— (21)
(3 oy
e
r=0
and
- n—1 n—1
ak(v a,)z— \ a, V a?
?l _ T—L;—IO r':O rL———(O (It 0.1 n 1)
6a~_ - = =uU L, - -
A (Y
o

We then have for a minimum the system of equations
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n—1 n—1
akzar—za3=0 k=01,-+--,n~—1). (22)
r=0 r=0

The difference between any two of Eqgs. (22) is

n—1
a — @) 2 a, = Q0.
=0

Thus ax = a; for all 7 and k. That these conditions actually yield a
minimum may be shown by examining the second derivatives. Equa-
tions (19) and (21) show that the gain of such a uniform array is n,
the number of elements.

The situation becomes more complicated if the restriction to half-
wavelength spacing is removed. We shall attempt an answer only for
broadside arrays having a total length (the distance between the first and
last elements) of A\/2. In that event, the half-wavelength-spaced uniform
array has the largest gain of all uniform arrays of the prescribed length.
However, the uniform array does not yield mazimum gain of all arrays of a
given length.

The array factor of an n-element uniform broadside array A/2 long is,

from Eq. (14),
- n_ow
sin ( i9 T cos 9) '

. 1
2 2 —
n? sin (n i3 cos 6)

/¥ = cos (7—; cos 0)-

¥ =

When n = 2, we have

The two-element array will have maximum gain if

sin ( )
cos (E cos 0) = ~
2 . T
n sin ( Q )

in the interval 0 £ # < x/2. This inequality, however, is equivalent to

f noo7 P . fn—27x P
sm 1 2 COS Sin 1 2 cOoS
e e .

n

- n—21roo
2 n—~12°"
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Because (sin z)/z is a decreasing function in the first two quadrants, the
inequality is established and the two-element array has the largest gain
of all uniform arrays whose total length is A/2.

To show that the uniform broadside array has not, however, the
largest gain of all broadside arrays of the same length, we shall consider
as a specific example the maximum gain of three-element quarter-wave-
length-spaced arrays. Let

_a -+ bz + cz?
&= rvTe

be the polynomial associated with any such array. As before, e, b, and
¢ are assumed to be real. Then from Eq. (20)

I_é/"m (a? + b2 + ¢®) + 2(ab + bc) cos ¥ + 2ac cos 2¢
T rJo (@a+b+c):

dy

™
or

(a2 + b2 4 ¢?) + 2(ab + be)
(a+ b+ c)
The equations for minimizing I are

(@ + b+ c)(ra + 2b) — 2(a+ b+ c)N =0,
(a+b4+c)ab+2a+ 2) —2(a+ b+ )N =0,
(a+ b+ c)we + 20) —2(a+b+c)N =0,

I =

T
42
™

where
N = g (a® + b% 4 ¢) + 2(ab + be).
Thus
a = c,
b=" "ty = _07510a.
r— 2

Hence G = 2.4 as contrasted to ¢ = 2.0 for the two-element half-wave-
length-spaced uniform array. In Fig. 9-8 are drawn the array factors
of the uniform array and the array whose gain was just computed. Also
shown is the array factor for the uniform continuous array, that is, one
in which n has been allowed to increase without limit, subject only to the
restriction (n — 1)s = A/2.

In practice it is frequently desirable to avoid half-wavelength spacing
because of the resonance that may occur at that spacing. As far as gain
is concerned this is quite feasible; for the gain of a uniform array suffi-
ciently long is nearly independent of the number of elements, provided
only that the spacing does not greatly exceed a half wavelength. How-
ever, it is only at resonance that the requirement that the radiating ele-
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ments be in phase can be readily met.! Nonetheless, if the spacing does
not differ by much from a half wavelength, the progressive phase delay
thereby introduced [¢, in Eq. (13)] causes but a small deflection of the main
beam from the normal to the array; the exact amount is given by

= gn-1 YoM
8 = sin 12_” (23)
0
7 \\¢¥
10
i ’
2 @
(@
40
10 30 50 70 90 110 130 150 170 180
o-—‘»

FiG. 9-8.—Array factors of four broadside arrays whose lengths are A/2: (a) the two-
element \/2-spaced uniform array cos? (g cos 9); (b) the four-element X/6-spaced uni-

i 27 X 7
sin? (? cos 0) sin? 5 cos a
: 3 (6) the continuous uniform array );—2
.
— cos @
(2 )

9-6. End-fire Beams.—The feeding coefficients of a linear array may
be chosen so that the array factor has an absolute maximum along the
axis of the array. If an element of the array produces a pattern having
an absolute maximum in the same direction and if the product of the
array factor and the element pattern has no other absolute maximum,
the array is called an “end-fire” array.

If the elements of the array are not directive, the radiation pattern
of the array is determined entirely by the array factor ¥(6). The pattern
is the surface in spherical coordinates given by

form array

; and (d) the
ke
16 sin? (6 cos #

three-clement A/4-spaced array with maximum gain.

r = V()

and is therefore a surface of revolution symmetric with respect to the
axis of the array. It is only by considering the three-dimensional picture
that the great difference between end-fire and broadside arrays becomes
apparent. The major lobe of an end-fire array is a pencil beam; thus a

1 See Sec. 9:17.
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one-dimensional configuration of sources produces radiation directive in
two planes and does so without relying on any directivity of the individual
sources. A broadside array on the other hand is directive in only one
plane; it is omnidirectional in the plane perpendicular to the axis of the
array.

Pencil beams whose half-power widths are in the region from about
15° to 35° can be produced quite readily by end-fire arrays that have
lengths ranging from 3 to 18 wavelengths. The length of the array,
however, varies inversely with the square of the beamwidth; narrow
beams would require very long arrays. By properly choosing the feeding
coefficients, end-fire arrays can be designed whose gains are almost double
those of broadside arrays with the same length. This increase in gain
has the greatest practical significance for arrays about 5 wavelengths
long.

In order to eliminate from the array factor large lobes in any direction
except 8 = 0, it is necessary to restrict the spacing of the elements. The
necessary relations can be obtained
from a study of the associated poly-
nomial and an examination of the
range of z on the unit circle in the
complex plane. Since the angle ¢
of z is given by

_ 2ms

¢/—TCOSG,

¢ assumes all values from 2ms/A
to —2rs/\ as § ranges from 0 to .
Because the array factor has a

~

period 27 as a function of v, the 06T
spacing s/A must be such that Fig. 9:9.—The range of ¥, the angle of z,

over the range of 8 the total varia- 2s @ varies from 0 to n. The outer ring of
figures shows corresponding values of 6 at

tion of lﬁ is less than 27r; that iS, various points on the unit circle in the z-plane
the range of z in the unit cirele for s = A/2. The inner set of figures shows

—— -

. X values of 8 for s = \/4.
is less than one revolution. In

that case a principal maximum, which in the case of an end-fire occurs
at ¢ = 2rs/\, will not be repeated. In Fig. 9-9 the mapping of 4 on
¥ is shown schematically. On the exterior of the unit circle in the
z-plane are shown values of 6, corresponding to the indicated points on
the circle for the spacing s = A\/2. The values shown on the interior
are for the spacing s = A/4. The array factor of a half-wavelength-
spaced end-fire array will duplicate its value for § = 0 again at § = .
To suppress such an undesirable back lobe it is necessary to separate the
end points of the range of z. The quarter-wavelength-spaced array will
be examined as a typical array that satisfies this condition. Figure 99
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shows that the range of ¢ for the quarter-wavelength spacing of elements
is from 7/2 to —=/2. TFrom the discussion in the previous sections it is
seen that if such an array has equal feeding coefficients, it will have its
principal maximum at § = =/2, that is, at ¢ = 0.

We have seen, however (Sec. 9-3, Fig. 9-4), that if a given array is
altered by having superimposed on it a constant-phase difference from
element to element, the effect on the array factor is to rotate the range
of z through an angle equal to that phase difference. If, in particular,
a quarter-wavelength-spaced uniform array is adjusted to introduce
e

a phase difference of — 5

between each pair of adjacent elements, the

principal maximum that occurs when
¥ = 0 corresponds to ¢ = 0, and an end-
fire antenna results (Fig. 9-10). The
array factor of such an array is obtained
immediately from Eq. (14) and is

sin? °T (cos 8§ — 1)

(g =
n? sinzg (cos 8 — 1)

The factor n® has been inserted in the

Fi1g. 9:10.—The effect of intro-
ducing a constant-phase difference
—7/2 on the elements of a quarter-
wavelength-spaced uniform array.

The inner semicircle shows the
original range of z and the correspond-

denominator so that ¥(0) = 1.

The gain is more easily computed
from the polynomial associated with the
array

n~1

ing values of 8. The outer semicircle
is the range of z due to the phase dif-

1 .
5\ — k. 5 — pin{cos8—1)/2
ference; the corresponding values of f(z) - 7—?, 2 275 zZ=¢ .
@ are indicated. k=0
Equation (20) becomes, after substituting and making the change of
variable ¢ = w(cos 8 — 1)/2,

n—1
[n + 2 z (n — k) cos kw] .
k=1

Thus from Eq. (19) ¢ = n, the same gain as the longer half-wavelengti:-
spaced uniform broadside array.

A uniform array with constant-phase difference between adjacent
elements is one readily realized in practice. It is then well to inquire
if the choice —7r/2 for the phase difference is optimum for an end-fire
array. If this difference is slightly less than —mr/2, then the range of z
is displaced slightly more than w/2. The direction 8§ = 0 no longer repre-
sents the principal maximum of

9 0

] _ .
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n

sin? —
2

(24)
sin? g

but is displaced slightly from it (Fig. 9-11). However, the principal
maximum of Expression (24) is not contained in the range of z. The
end point of that range corresponds to § = 0 which then is a maximum
of Expression (24) considered as a function of 8. The net effect is two-

Z

-2r - 0 1 2w
w-——b

5y

sin2 —

included in the range of

F1a. 9-11.—The portion (cross-hatched) of the function
25 sin? 3

z due to a displacement slightly more than = /2.

fold: Because the value of Expression (24) at 6 = 0 has been reduced,
the relative heights of the side lobes are increased and the gain tends to
be reduced. On the other hand, the width of the main beam has been
diminished, which has an opposite influence on the gain.

An estimate of the displacement yielding maximum gain may be made
by approximate methods valid for large n. Suppose the phase difference
between any two elements is — (r/2) — o; that is,

¢=1§r(c050—1) — Yo
Then the array factor is

P 73 nr o
2 2 — —_—
sin’ o sin [4 (cos § — 1 5 ]

¥(6) =
sin? %‘Po sin? [g (cos 8 — 1) — %]

The first factor has been inserted so that ¥(0) = i. An approximation
of t¢he gain may be obtained. If ¥y = —(n/2)y, Eq. (20) becomes
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sin? ¥ nlr+ 0 /2
4 sin?
== Y ay. (25)
nr sin? "o sin? ¥
2 nyo/2 n

If n is large, the distant side lobes have little effect on the gain. We
may replace sin? y/n by its argument, thus reducing the height of the
distant side lobes. The range of integration may then be extended to
o and sin® yo/2 may be replaced by its argument with but a negligible
effect on the value of I. Then Eq. (25) becomes

2 D in?

n Sin

sin? -2 y
rgo/2

By graphical methods’ it has been shown that I is a minimum when
Yo = 2.94/n. Then the direction 8 = 0 corresponds to the point where
the function given in Expression (24) is 46 per cent of its maximum value.
The main beam is about half as broad as that of a uniform array with a
phase shift of —z/2. On the other hand the heights of the side lobes
have been more than doubled. The gain of such an array is

G = 1.82n.

Its half-power width is approximated by
_ 125°
Vn

For a more general spacing s between adjacent elements, maximum
gain occurs when

0

2,94\
Vo= s

Here ¢, still refers to the additional displacement of the range of z beyond
7/2. The phase difference between adjacent elements is —2ms/A — .
The gain for the general case is

4ns

G =182 ~

However, s is not completely arbitrary. We still must conform to our
assumption that the distant side lobes have small effect on the gain. It
has been suggested® that the approximations are valid for s < \/3.

! W, W. Hansen and J. R. Woodyard, ‘““A New Principle in Directional Antenna.
Design,” Proc. IRFE, 26, 333 (1938).
? Hansen and Woodyard, ap. eit.
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An entirely different technique for increasing the gain of an end-fire
array has been given.! Again we start with a quarter-wavelength-spaced
uniform array with a phase delay —n/2 between adjacent elements.
The polynomial associated with such an array is

n—1 n—1
@) = E (=i = (=] & = g (26)
k=0 k=1

where w is the nth root of unity with the smallest positive angle. The
array factor is then

n—1

v(f) = H o — juk.
k=1

The numbers jw* lie on the unit circle, and, it will be recalled, the array
factor is formed by computing the square of the product of the distances
from these numbers to the variable point z.

It is apparent (Fig. 9-12) that the zeros of

f(z) lying outside the range of z add little

to the directivity of the array. Thus, an

array whose polynomial is

n—1
= 1l e-in,
e [2F]

retaining as it does only those zeros which

lie on the range of z, will have the same Fig. 9-12.—The location or
nulls as formerly and at the same location. he zeros of Ea. (26) with relation

A . . to the range of z forn = 8.

Its gain will have been reduced but little,

while its number of elements has been almost halved.

9-7. Beam Synthesis.—The preceding sections have dealt principally
with the problem of analyzing the properties of the array factors of given
linear arrays. The inverse problem, that of finding an array which will
yield an array factor having prescribed characteristics, is far more diffi-
cult. The present section will treat some aspects of the synthesis problem.

The nature of the synthesis problem depends on the manner in which
the desired pattern is specified. The latter may be prescribed as a
complete function of 6 over the physical range 0 < § < x. In general a
solution is sought that gives an acceptable approximation to the desired
pattern. There can be no unique solution to such a problem, since the
pattern is prescribed only as regards intensity distribution of the radia-

1S. A. Schelkunoff, ““A Mathematical Theory of Linear Arrays,” Bell System
Tech. Jour., 22, 80 (1943).
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tion field; the phase distribution is arbitrary, and each choice of such a
distribution will lead to a different array. Only a partial solution to the
problem will be given. It will be based on the general characterization
of the array factor of an n-element array and the formulation of the prop-
erties that a pattern must possess in order to be the array factor of a
linear array. All n-element arrays will be found that have a given array
factor. The problem of finding the best approximation to a given pattern
by a realizable array factor is beyond the scope of the present discussion.

The desired pattern may be specified with regard to general proper-
ties rather than as a complete function of 6. Examples of such synthesis
problems are the design of a broadside array having minimum beamwidth
for a given side-lobe level and the design of one having a minimum side-
lobe level for a given beamwidth. These problems have exact solutions
when the spacing of the elements of the array is A/2 or greater; they will
be discussed later in this section.

We shall consider first the characterization of the array factor of an
n-element array. The array factor can be obtained from Eq. (8) by
replacing { by e/ ==/ and expanding. If the real numbers 4 and B:
are defined by

n—1—k

AtiBi= ) oal, @7
r=0
Eq. (8) becomes

V() = 4.+ 2 z [Ak cos (kz)\Ls cos 0) + Bi sin (k 21"73 cos 0)] (28)

Thus the array factor of any n-element linear array with spacing sis a
trigonometric sum of order n — 1 in the angle ¥ = (2xs cos 6)/\. The
trigonometric sum is nonnegative for all real values of ¥. Conversely,
every nonnegative trigonometric sum can be realized as the array factor
of a linear array. It follows then that the necessary and sufficient con-
dition that there exists a linear array having the prescribed pattern as its
array factor is that the prescribed pattern can be expressed as a nonnega-
tive trigonometric sum of a finite number of terms. Expressing the
prescribed pattern as such a sum determines the coefficients A, and By,
and in principle the feeding coefficients a, of the array can be determined
from Eq. (27).

To find an n-element array that will approximate the prescribed
pattern, the latter may be approximated! by the terms of order less than

1 The method of approximation selected will depend on how the prescribed pattern
is specified and what deviation from it is acceptable. For a general discussion of this

problem see C. de la Vallee Poussin, Legons sur I’ Approzimation des Fonctions d’ une
Variable reéle, Paris, 1919.
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n in its Fourier series expansion in the angle ¢y = (2#s cos ) /A. When E
8 > A/2, the periodicity of - the Fourier series may present difficulty. If
these terms form a trigonometric sum that is nonnegative for all ¢, the
coefficients Ay and B, may be used to determine the feeding coefficients
of the n-element array.
A direct solution of Eq. (27) is, however, difficult, Instead, define
an auxiliary polynomial F(z) by

n—1 n—1
F®=zm—mwm+wﬂ+zmmﬁw+ﬁm)
k=1 k=1

Then Eq. (28) becomes

V(0) = [Flerere =), (30)

If 2, is a zero of F(2), so also is its conjugate reciprocal 1/zf. The assump-
tion that the trigonometric sum is nonnegative thus implies that the zeros
lying on the unit circle, which are their own conjugate reciprocals, occur
with even multiplicities. Hence the zeros of F(z) may be grouped in
pairs; and aside from a constant multiplier,

o =[][e -0 (- 5)] 31)

k=1

One zero in each pair may be selected as a zero of a new polynomial

i@ =[] - = (32)
k=1

For values of z on the unit circle
If(2)[* = [F(2)] = ¥(0),

where again a constant multiplier has been dropped. Equation (30)
then implies that ¥(6) is the array factor of the array whose associated
polynomial is given by Eq. (32). The separation of the zeros of F(z)
into two sets can in general be done in many ways. Each such partition
will usually lead to two different arrays; all arrays will have the same
array factor. When all the zeros lie on the unit circle (as, for example,
in the uniform array), only one method of division is possible and the
two sets obtained are the same. It should not be assumed that finding
an array having a given array factor is an easy computational problem,
even when n is as small as 5. It is necessary to find the zeros of a poly-
nomial of degree 2n — 2 and then perform the multiplications indicated

e S
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in Eq. (32) to find the feeding coefficients. Simpler but less general
methods have been devised.!

It is now possible to verify the assumption made in Sec. 9-5 that as
far as the gain of broadside arrays is concerned, attention may be restricted
to arrays whose elements are either in phase or out of phase by 180°,
that is, to arrays whose feeding coefficients are real. The array factor
of an arbitrary array is given by Eq. (28). If the sine terms are dropped,
the resulting ¥(6) is still the array factor of some array. Moreover the
gain in the direction § = = /2 is unchanged, since both the field intensity
in the direction 6 = 7/2 and the integral in Eq. (20) are unchanged by
eliminating the sine terms. The corresponding polynomial ¥(z) in Eq.
(29) will have real coeflicients, and its nonreal zeros occur in conjugate
pairs. Hence in forming the associated polynomial f(z), the pairing of
conjugate zeros may be maintained and f(z) will have real coefficients.

Let us consider next the problem of minimizing the side-lobe level of
broadside arrays with a fixed beamwidth or maximizing the beamwidth
for a given side-lobe level. The problem has received an exact solution?
when the spacing between elements is at least /2 and sufficiently less
than \ to eliminate any large end-fire lobe. For the present purposes
a convenient definition of beamwidth is the angular difference between the
position of the two nulls enclosing the main beam. Only those arrays
will be considered whose main-beam nulls are symmetrically located with
respect to the direction 6§ = 7/2,

The array factor having either the minimum beamwidth or the lowest
side-lobe level may be expressed in terms of the Tchebyscheff polynomial
Tan(z) = cos (2n cos™' z). This polynomial falls between —1 and +1
in the interval —1 £ = £ 1, assumes the value 41 at the end points of
the interval, increases steadily outside the interval, and is symmetric
with respect to the line x = 0. The actual array factor is given by

¥(6) = %[1 + Th(a2)], 2 = cos (”%@) (33)

Figure 9-13 is a graph of §[1 + Tw(az)] forn = 4 and e = 1. In Eq.
(33) the direction 6 = r /2 corresponds to z = 1. If

1+ Tana)] =7, (34)
the relative height of each side lobe is 1/r. The array factor with this

! 8. A. Schelkunoff, ‘A Mathematical Theory of Linear Arrays,” Bell System Tech.
Jour., 22, 80 (1943); and Irving Wolff, “Determination of the Radiating System
Which Will Produce a Specified Directional Characteristic,” Proc. IRE, 28, 630 (1937).

2 C. L. Dolph, ““A Current Distribution for Broadside Arrays Which Optimizes the
Relationship between Beam Width and Side Lobe Level,”” Proc. IRE, 34, 335 (1946).

The results of Dolph have been generalized by Henry J. Riblet, Proc. IRE, 85, 489
(1947).
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side-lobe level and having the smallest beamwidth is given by Eq. (33)
with @ a solution of Eq. (34). The null nearest x = 1 occurs for

T
T = cosg (35)

This, together with z = cos [(rs cos 8)/A], gives the beamwidth. If the
side-lobe level is to be minimized for a prescribed beam width, Eq. (35)
is used to determine a and Eq. (34) to find the height of the side lobe.

N/

1 1 [ 1 I L
-1.1-10-09-08-0.7 -06-05-04-03-02-01 0 01 02 03 04 05 06 07 08 09 10 LI
Fig. 9:13.—The function i[1 4+ Ts(x)].

The substitution z = (2% + z~%) transforms 3{1 4+ Ts.(azx)] into
27"F(z), where F(z) is a polynomial of the form of Eq. (29) with B, = 0
for all k. The symmetry of 7T:.(az) ensures that the fractional powers
of zin F(z) are missing. The same substitution transforms

z = cos [(ws c;)s 0)]

into z = e/@r /A Hence this substitution transforms Eq. (33) into
Eq. (30), and thus Eq. (33) represents an array factor of some linear
array. The feeding coefficients are obtained most easily from the zeros
of 3[1 + Tan(az)], for these transform into the zeros of f(z), the associated
polynomial of the array.

The optimum properties of the Tchebyscheff array are readily estab-
lished. An argument similar to one used earlier in this section is sufficient
to show that attention may be restricted to arrays whose associated
polynomials have real coefficients. The array factor can be represented
in the form of Eq. (30). The polynomial F(z) defined in Eq. (29) has
only real coefficients. Hence the substitution z = $(2** + 2=%%) trans-
forms z—"F(z) into a polynomial G(z) symmetric with respect to the line
z = 0. Equation (39) is transformed into
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¥(8) = G(z), Z = €os (@)

Suppose G(2) is normalized so that G(1) = r with r as in Eq. (34). Itis
impossible for G(x) to have a zero for z = z, [Eq. (35)] and at the same
time lie between 0 and 1 for 0 = £ < z:. Any such polynomial would
then have (n + 1) points in common with 4{1 + T,,(x)], double points
being counted as such. The symmetry then shows that the two poly-
nomials, each of degree 2n, have 2n 4+ 2 points of intersection and so
must coincide. If s = A/2, there are real values of § corresponding to
any « in the interval 0 £ £ £ 1. Hence if the side-lobe level of the
array is 1/r, the requirement that 0 = G(z) < 1for 0 £ z < z; must be
met, and the only array possible is the Tchebyscheff array.

RADIATING ELEMENTS

9-8. Dipole Radiators.—The various forms of coaxial line-fed dipoles
discussed in Chap. 8 can be adapted for use as a linear-array element to
be mounted on either coaxial line or waveguide. Design and perform-
ance are discussed here in terms of a rectangular guide; however, the
fundamental ideas apply to all types of lines. The general properties
desired of a dipole element are (1) a balanced excitation of the wings to
give a symmetrical pattern, (2) a resistive load presented by the dipole
because a reactive component means large reflections in the line, (3) an
easily adjustable resistance with minimum frequency dependence, and
(4) high power capacity.

The requirement for balanced excitation of the wings favors the use
of the slot-fed dipole (¢f. Sec. 8:4). The open-end termination has been
used almost exclusively; the stub-terminated units are more frequency
sensitive and are also limited in power capacity by the standing waves
in the stub section. The general arrangement of a slot-fed dipole adapted
to a rectangular guide is illustrated in Fig. 9-14. The inner conductor
of the coaxial line serves as a coupling probe to the waveguide; it is evi-
dent that the probe should be parallel to the electric field in the guide for
efficient coupling.

The important parameters of the dipole are slot depth, wing length,
and outer-conductor diameter. The properties of the element are com-
plicated functions of these parameters, and little is available in the form
of systematic data. Breakdown tends to occur between the conductors
of the coaxial section. The breakdown potential can be increased by
increasing the slot width and the outer-conductor diameter; the extent
to which this can be pursued is limited, however, by the unbalancing of
the wing excitation. The unbalancing is due to higher modes becoming
prominent and producing an as;mmetrical field across the line; the simple
mode picture drawn in Fig. 8-6 is applicable only for slot widths and

e
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coaxial-line dimensions that suppress the higher modes. The element
illustrated in Fig. 9-14 designed for use in the 10.7-cm region has a high
power capacity.! With the values of the parameters indicated in the
figure the balanced condition is maintained, as evidenced by a symmetrical
radiation pattern; furthermore, studies of the phase fronts indicate that
the unit has a center of feed located in the inner conductor. The wave-
guide serves as a reflector so that the unit mounted in guide forms ~ssen-
tially a dipole-plate system.

RSN
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N

L

0.080

SR uRRuY]
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Fic. 9:14.—Cross section of a dipole on rectangular waveguide.

In the arrangement shown in the figure, the dipole behaves like a
load shunted across the line. This is proved experimentally by measur-
ing the input admittance of the dipole when it is followed by a variable
reactance, which is provided by a movable plunger in the end of the guide;
it is found that the conductance of the system is independent of the ter-
minating reactance. The admittance of the dipole is a function of probe
depth. With no probe the element presents an inductive susceptance
component; the probe, like a tuning screw, is a capacitative susceptance
(except for extreme depths of insertion); accordingly it is possible to
find a probe depth at which the susceptance of the element as a whole

1J. Whelpton, ‘“Admittance Characteristics of Some S-band Waveguide Fed
Dipoles,” RL Report No. 1082, January, 1946.
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vanishes. These relations are illustrated in Fig. 9-15, a plot of the dipole
admittance as a function of probe depth. The depth to which the probe
may be inserted is limited by breakdown, which can occur between the
end of the probe and the bottom of the guide. This difficulty can be
obviated in some measure by terminating the probe in a small sphere.

(:Ol'l‘)poneml .
0.10(7 ")

0

o sr‘e\-,\am:e
-010

F1g. 9-15.~—Dipole admittance as a function of probe depth in inches (A = 10.7 em).

For a given depth of insertion, the sphere causes a slight increase in the
capacitative effect of the probe.

The impedances of these dipoles as single elements are practically
independent of the orientation with respect to the axis of the line. In
an assemblage of elements there are mutual interactions which are
decided functions of orientation.

For assemblages of elements the question of reproducibility of an
element in production is of considerable importance: it has been found
that characteristics can be reproduced quite accurately by centrifugal
or die-casting production methods.

9-9. Slots in Waveguide Walls.—It was noted in Chap. 7 that the
electromagnetic field in the interior of a waveguide has associated with
it a distribution of current over the boundary surfaces of the guide.
This current sheet may be regarded properly as that required to prevent
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penetration of the field into the region exterior to the boundaries; it is
indeed true that the metallic structure can be removed, providing the
current sheet is maintained, without leakage of energy across the bound-
aries. If a narrow slot is cut in the wall of a waveguide such that the
long dimension of the slot runs along a current line or along the region
of the wall where the current is zero, it produces only a minor perturba-
tion of the current distribution and correspondingly very little coupling
of the internal field to space. IExamples of such slots are elements cut
in a coaxial line with the long dimension parallel to the axis of the line
or elements of the type ¢ and e cut in a rectangular guide asillustrated in
Fig. 9-16; the slot ¢ lying along the central line of the guide is in a region
of zero current density. Nonradiating slots offer a means of entry into
the guide for studying the internal field and are used for this purpose in
impedance measurements (¢f. Chap. 15).

On the other hand, a slot cut in a guide wall in a direction transverse
to the current lines produces a significant perturbation of the current
sheet, with the result that the in-
ternal field is coupled to space. ——
A slot of this type constitutes a b %
radiating element. The degree of e — 0!
coupling depends on the current ¢
density intercepted by the slot and
the component of the length of the
slot transverse to the current lines. GH %0 ?
Thus the coupling at a given posi- /3
tion on the gUi,de can be adeSte.d Fia. 9:16.—S8lots in the wall of rectangular
by the orientation of the slot as is waveguide.
indicated for the elements d and f
in Fig. 9-16, or the coupling can be adjusted by position like the radiating
slot b and non-radiating slot ¢ in the figure. The type of circuit element
that the radiating slot presents to the transmission-line representation of
the wave-guide is again a function of position and orientation. Under
certain conditions the slot is in effect a shunt element; in others a series
element; under very general conditions the slot can be represented ade-
quately only by a T- or II-section inserted in the line.  The general circuit
relations and the fundamental properties of slots will be developed in the
following section.

9-10. Theory of Slot Radiators.—Let us consider a cylindrical wave-
guide of arbitrary cross section with its axis the z-axis. It was found in
Chap. 7 that the normal modes of such a guide fall into two classes:
TE-modes having an H,- but no F,-component and TM-modes having
an [/,- but no [ ,component. [ach mode is characterized by its char-
acteristic admittance Y¢), and propagation constant Bm..; the latter 1s
real for a freely propagated mode but is to be taken equal to —jym. for a




288 LINEAR-ARRAY ANTENNAS AND FEEDS [Sec. 9-10

mode beyond cutoff. From the general discussion in Sec. 7-3 it is seen
that the field components of a TE-mode of order a = mn can be written

H, = jHaz exp (?jﬂaz);
E. = Ea exp (FjBa2), (36)
HL = i’Hat eXp (xjﬂaz);

where E, and H, represent the transverse electric and magnetic field vec-
tors and the upper or lower signs are taken according as the wave is
going in the positive or the negative z-direction. The general form of the
TM-mode field components is the same as in Eq. (36) with H, replaced
by

E, = jEu; exp (FjBaz). (37)

If B, is real, the functions E,,, H,., Ea, and H, are all real and depend
only on @, x, and y. We have also seen (cf. Sec. 7.3) that the component,
vector functions E,. and H,; have the orthogonality property

/(Ealebt)'izds=O, a;éb,
=8, a=hb,

(38)

where S, is twice the Poynting energy flux for a freely propagated mode
and i.is a unit vector in the direction Oz. The normal modes of the guide
form a complete set in terms of which an arbitrary field distribution over
the wall of the guide can be expressed in the form of a Fourier expansion.

Now consider a slot from z; to 2, in the wall of the infinite guide.
We assume that the guide is to be excited by a known field distribution
along the slot. Then the field in the guide, which is denoted by subscript
1, will consist of outgoing waves on either side of the slot; that is, it will
contain only waves going to the right for z > z; and only waves going to
the left for z < 2,

E, = 2 AEq exp (—jﬁ“z)’ z2> 2,

a

E. = z B.E, exp (jBaZ)) 2 <2,

a

(39)
H,

E AaHa! exp (_]..Baz)y z2 >z,

Hu = _2 BaHa,t exp (jBaZ), z < 2.

The amplitudes of waves going to the right and left are not necessarily
equal and are denoted by A4, and B, respectively; they must be such
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that on superposing the two sets of waves a field is produced which
matches the field over the slot according to the general boundary condi-
tions formulated in Chap. 3.

In order to evaluate the amplitudes A, and B, an auxiliary relation
must first be derived. Consider two ficlds E;, H, and E., H, of the same
frequency and both satisfying the homogeneous field equations. By
virtue of these equations we find

V-(E;xH,) =V-(E, xH,) = —jw(¢E, - E; + uH, - H,),
Hence

V-[(E: xH:) — (E; x Hy)] = 0.

If V is any closed region bounded by a surface S, it follows by the diver-
gence theorem that

[ (El X H2 - Ez X Hl) . Il' (JS = 0, (40)
S

where n’ is the unit vector normal to dS and directed outward from V.
I'irst, we shall evaluate B,. Let the field E,, H, be the field set up in
the guide by the slot as formulated in Egs. (39). For the ficld E,, H, let
us take a normal mode, free propagation of which is supported by the
guide, traveling toward the right, and let a be the index of this mode.
Furthermore, take as the region V the section of the guide containing the
slot, bounded on the left by the plane 2 = 23 < z, and on the right by the
plane z = z4 > 2z,.  The surface S to which Iig. (40) is to be applied
consists then of these two planes and the wall of the guide. Over the
planc z = 2z, the ficlds 1 and 2 consist of systems of waves traveling in
the same direction.  When the indicated substitutions are made and the
orthogonality property of Eq. 38 is used, the integral vanishes. On
the plane z = z; the ficlds 1 and 2 are composed of waves traveling in
opposite directions. Making use of the orthogonality relation again
and noting that for this surface n’ = —i,, the integral over this surface
is —28B,5,. Considering the integral over the wall, the second term in
the integrand is zero everywhere, for it ean be written as Hy - (n’ x E,),
and n” x E; is zero over the wall, since E, is 2 normal mode.  Similarly
the ficld E; must satisfy the condition n” x E; = 0 over the metal wall
boundary. The only nonvanishing contribution from the wall area arises
from the first term of the integrand over the region of the slot. One
thus finds

2]3‘15'0 = — / (E) X Hg) -1 dS, (41)
slot

where n is a unit veetor normal to the wall and direceted into the interior
of the guide. If = is a unit vector perpendicular to the axis of the guide
and tangent to the surface of the guide, then
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n=xxi. (42)
Substituting this last relation into Eq. (41), we obtain finally

2BaSa = /1 . (*].Eeraz + Elear) eXp (_],@az) dS. (43)

Second, we shall evaluate A.. Tte field E,, H, is again taken to be that
set up in the guide by the slot, and the field E,, H, is taken to be the
normal mode of index ¢ traveling to the left. In this case the plane
z = z3 does not contribute to the integral in Eq. (40), and the plane
z = 2z, contributes —24.S8,; over the wall of the guide the only non-
vanishing contribution arises again from the first term of the integrand
over the area of the slot. It is thus found that

24.8,

i

- /1 (E: x Hy) - ndS
slot

= — /1 . (JEwHa. + Ev.H,.) exp (jBsz) dS. (44)

The interpretation of Eqgs. (43) and (44) for the amplitudes becomes
clearer if the magnetic field components H,, and H,. are replaced by
surface current densities K,, and — K,, respectively. These are the com-
ponents of the surface current, in the direction of the axis of the guide
and in the direction transverse to it, that exists over the area of the slot
in the nonslotted guide supporting the ath mode. In terms of these
currents the amplitudes become

2B.S, = f (BoKe + BuKo) exp (—j82) dS, (45)
slot

2448, = / (JEuK. — ELK,.) exp (jG.z) dS. (46)
flot

It is evident from these equations that in general the slot does not radiate
equally in both directions within the guide. The formulas also show that
the slot will couple the ath mode to space only if it cuts across current
lines corresponding to that mode. There are various special conditions
under which a small slot is symmetrical with respect to the ath mode.
If all the dimensions of a slot are small compared with the wavelength,
the variation of a phase factor exp (Fj8.2) across the slot can be neglected;;
without loss of generality the slot can be located at z = 0, in which case
the phase factors are replaced by unity. We then observe that

1. A, = B, if E,, or K. is zero. Reference to Eqgs. (39) shows that
as far as the ath-mode contribution is concerned, Ey, is continuous
at the plane z = 0 while the magnetic fleld is discontinuous; in
fact, H;; is in opposite phase to Hy. With respect to the ath
mode the slot acts like a shint element in a transmission line.
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2. A, = — B, if E\, or K,, is zero. In this case E,, is discontinuous
and H,, is continuous at the plane z = 0 as far as the ath mode is
concerned; the slot behaves like a series element in the ath-mode
transmission line.

The slots of more general interest are narrow ones having a length of
about A/2 and a width small compared with the length. The electric-
field distribution in such a slot is nearly sinusoidal along the length and
independent of the feeding system; the direction of the field is transverse
to the long dimension. There are also special conditions under which
such slots reduce to series or shunt elements:

1. Axis of the slot perpendicular to the guide axis. In this case the
phase factor exp (+jB42) can again be replaced by unity. Further-
more K, = 0; hence if K.. # 0, A, = — B, and the slot behaves
like a series element in the ath-mode transmission line.

2. Axis of the slot parallel to the guide axis. In this case £, = 0 and
the second members of the integrands of Eqgs. (45) and (46)
vanish. The variation of the phase factors exp (Fj8.2) cannot
be neglected; however, K,, is constant, and £, is an even function
along the slot; therefore only the real parts of the phase factors
contribute to nonvanishing integrals, and one has A, = B,. The
slot oriented in this manner behaves like a shunt element.

Except when special conditions of symmetry are imposed on the field
and on the currents in the slot, for orientations more general than (1)
and (2) above, B, # *+ A,, and the slot behaves like a more complicated
combination of shunt and series element. In this case the slot is repre-
sented by a T- or II-section equivalent in the ath-mode transmission line.

9-11, Slots in Rectangular Waveguide; T E;,-mode.—The theory of
slots in rectangular guide that supports only the TE,-mode will be devel-
opedindetail. The discussion will be based on the following assumptions:

1. The slot is narrow; i.e., 2 logio (length /width) > 1.

2. The slot is cut so that it is to be near the first resonance (length
of the slot = \/2).

3. The fleld in the slot is transverse to the long dimension and varies
sinusoidally along the slot, independent of the exciting system.

4. The guide walls are perfectly conducting and infinitely thin.

5. The field in the region behind the face containing the slot is
negligible with respect to the field outside the guide; this is tanta-
mount to extending the face containing the slot into an infinite
perfectly conducting plane.

The third assumption concerning the field distribution is closely in
accord with experimental conditions. The fifth assumption is probably
the most radical in its departure from the actual conditions.
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First the equivalent circuits are given for the common types of slot,
and then the method is given for calculating the values of the elements
by means of Eqs. (45) and (46) and the electromagnetic formula-

-—e——

@

%9 +jb
w

(b)

tion of Babinet’s principle (Sec.
5-15), provided the reactive field
of the slot is zero.! The rectan-
gular guide has the dimensions
shown in Fig. 9-17. The shunt
conductance of a slot normalized
to the characteristic admittance
of the TE s-mode line is g, and the
series resistance normalized with

o—AM———o respect to the line characteristic
t{ Midon | il T impedance is r. We have then
T __:El___ o—— o (1) for a longitudinal slot in the

broad face (shunt element b in
© Fig. 9-17)

o—"\M\~—o g = g1 sin? (’ﬂ> (47a)
H ] T+JT a
-t — - where
— — 20922 o5z TN,
@ g1 = 2.09 N3 Cos (2%0)’ 47b)
3
™ (2) for a transverse slot in the
| § %? g+ib  broad face (series element ¢ in

Fig. 9-17)
T = 19 COS® (7%1); (48a)

! ©

Fig. 9-17.—Parameters and equivalent
circuits of slots in rectangular waveguide
(reference point for circuit elements is the
center of the slot). (a) waveguide dimen-

sions; (b) longitudinal slot in broad face, where

shunt element; (¢) transverse slot in broad Y 3 A2 A
face, series element; (d) centered inclined slot  r; = 0,523 L) — cos?|-—=):
in broad face, series element; (e) inclined slot A ab 4a)’

in narrow face, shunt element.

(48b)

(3) for a centered inclined slot in the broad face (series element d in Fig.
9-17)

— 0131 (X)X [ 16) sin 6+ 227 (0) cos 8| 49
r=0. )\_'; P (6) sin +% (6) cos ’ (49a)
where
wk w7
1)) _°* <7> o (7>
J(o)} =g F t o (49b)

t The results to be quoted are due to A. F. Stevenson, “Series of Slots in Rectan-
gular Waveguides,” Parts I and II, Special Committee on Applied Mathematics,
National Research Council of Canada, Radio Reports 12 and 13, 1944.
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gl A D
Nl cos 6 F 5g S0 f; (49¢)

and (4) for an inclined slot in the narrow face (shunt element e in Fig.
9-17)

2

30 X sin 6 cos (2;\ sin 0)
g= ( ) : (50)

73r a’h A\
1 —-1{—]) sin?8
- Ay

As an illustration of the method of deriving the above relations we
shall conclude this section with a summary of the procedure for the
longitudinal slot in the broad face of the guide, Case (1) above. Choose
dimensions as indicated in Fig. 9-17b. Suppose a TE,-wave of ampli-
tude unity to be incident on the slot from the left; this field induces a
field across the slot so that the slot radiates waves in both directions in
the guide and into space outside the guide. The amplitudes Bjo and Ao
(the mode index a is here replaced by 10) of the waves radiated in the
interior are given by Eqgs. (45) and (46) in terms of the field in the slot;
the field, according to the third of our initial assumptions, is

E,, = E, cos (kz),
Ky, =0,

where Fis the field at the center of the slot. We have also for the other
quantities entering into Eqgs. (45) and (46)

(K1), = =Y k_ sin (WZ’)

Suw= VY (5“’> (51b)

Bl = k* — (’é)

where Y{? is the characteristic wave admittance of the TE ;-mode.! On
inserting these quantities into the expressions for the amplitudes it is
seen at once that A;p = Bio; that is, the slot is a shunt element, in agree-
ment with the previous conclusions relative to slots parallel to the guide
axis. The amplitudes are given explicitly by

: Tz Bioh
Aw = By = —jw Fo (7)> sin (f) cos (lTO); (52)

! The eonstants of (Kio), and Si correspond to the mode being so normalized that

(51a)

Il

o . . . . x
the eleetrie field across the guide is given by %sm 1{1—-
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where w is the width of the slot. It is useful to express the siot excita-
tion in terms of a ‘“‘voltage” transformation ratio. The “voltage”
across the slot is defined to be the line integral of the field across the slot
at its center, i.e.,

Vo = ’LUE(],

while the voltage in the guide corresponding to any one of the dominant-
mode waves is defined as the line integral of the field across the center of
the guide, i.e.,

V] = bAlO = l)B]o.

The voltage transformation ratio is then

Vl _ .2 k 2 . Ty 610)\
v, = =i (ﬁ) sin (7> cos (T) (53)

It is recognized further that the amplitude A, measures directly the
reflection coefficient I' (at z = 0) in the transmission-line equivalent of
the dominant-mode wave. If the slot is resonant, the value of I' at z = 0
must be real, because the impedance looking to the right is real at that
point at resonance. Then if the slot is a shunt element of normalized
conductance g, the total admittance at z = 0 is 1 + g¢; while if the stot
is a series element of resistance r, the input impedanceatz = Q0is1 + 7.
From Eqgs. (2:30) and (2:36) ¢ and r may be expressed in terms of T' by

2 ol o8
L+ 5 1- 5

g=-

The value of T can be evaluated for a resonant slot by energy-balance
relations. The total energy incident on the slot is equal to the sum of
the reflected, transmitted, and radiated energy. The incident power is
S./2 for an incident wave of unit amplitude; the reflected power is

2
(A 10)*2—“- The total amplitude of the dominant-mode wave to the right

of the slot is 1 + Bio; hence, the transmitted power is

(%") Re (1 + B2

In computing the power radiated by the slot use is made of a result
obtained, by means of an electromagnetic Babinet’s principle,! for the
radiation resistance of a center-driven narrow slot in an infinite perfectly
conducting plane sheet of zero thickness. In this case the input resistance
is

! H. Booker, ‘“Babinet’s Principle and the Theory of Resonant Slots,” TRE Report
No. T-1028.




Sec. 9-12] EXPERIMENTAL DATA ON SLOT RADIATORS 295

_ 1 Ho
Rr - 4 X 73 €9
In the infinite sheet problem the slot radiates to both sides of the sheet;
in our case the slot radiates to one side so that the radiation resistance
is assumed to be simply twice the above value. The power radiated
by the slot is then given by

1 V% _ 2 €p .
5‘2[{, = 73V0;; watts
Writing the energy balance equation and remembering that 4, = By,
we have
Sa

Sa Da
S Y % (1 4 4102 + 2Re (410)] + 7373 <.
Ko

Finally, since 4,0 = T is real, we obtain from the above

€9 V%

Ho ‘Sa(AIO)Z

1+ Il (55)
Making use of Eqgs. (51a) and (51b) and substituting this last result into
Eq. (54), the conductance of the resonant shunt slot is

_ 1207 a (8,

9= 73 b\ k
We already have the voltage transformation ratio in Eq. (53); substituting
this into Eq. (56) gives the final expression for the normalized shunt

conductance,
_480a), L fm\\ . ,(rz),
9 =537 00 (ﬁ) sin® { = (57)

9-12. Experimental Data on Slot Radiators.—Confirmation of the
theory developed in the last section has been obtained by experiment
for the longitudinal slot in the broad face of the guide (Case b, Fig. 9-17)
and for the inclined slot in the narrow face (Case e, Fig. 9-17).! The
resistance of a longitudinal slot as a function of its position with respect
to the center of the guide is shown in Fig. 9-18; the points are in good
agreement with the formula

Vi
Vo

2

(56)

1A, L. Cullen, “The Characteristics of Some Slot Radiators in Rectangular
Waveguides,” Royal Aircraft Establishment, Great Britain, Tech. Note No. Rad. 200;
Dodds and Watson, ‘‘Frequency Characteristics of Slots,” McGill University, PRA-
108; Dodds, Guptill, and Watson, ““ Further Data on Resonant Slots,”” McGill Univer-
sity, PRA-109; E. W, Guptill and W. H. Watson, ‘“Longitudinally Polarized Arrays
of Slots,” MecGill University, PRA-104.
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g = g: sin? (1%1) (9.47a)

but the numerical constant g, is 1.73 whereas the theoretical value given
by Eq. (47b) is 1.63. The discrepancy is probably due to the assumptions
underlying the theory. The frequency characteristics of longitudinal
100
g0 |1

o
o\

1

2 \‘i

1
08 —
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0 02 04 06 08 10 12 14

Slot displacement from center of guide to center of slot, in.

FiG. 9-18.—Resistance offered by a longitudinal slot as a function of its displacement
from the center. The slot dimensions are % by 2 in., the waveguide is 1} by 3in.,, A = 10.7
em. The data fit the relation G = Zo/R = 1.73 sin? [(rz/a)1]. (From J. W. Dodds, E W.
GQuptill, and W. H. Watson by permission of the National Research Council of Canada.)
slots as a function of slot width are presented in Fig. 9-19, which shows
that the wider the slot the flatter the frequency response. The maxi-
mum of conductance does not coincide with the vanishing of susceptance.

For practical convenience dumbbell-shaped slots such as the one illus-
trated in Fig. 9-20 have been used in arrays in place of rectangular slots.
The perimeter of a resonant slot is generally equal to a wavelength. The
length of a resonant dumbbell slot is therefore less than that of rectangular
ones; they can be used with less sacrifice of mechanical strength, since
less guide is cut away. The dumbbell slot is also simpler to machine
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Fiag 9:-19.—Admittance of longitudinal slot as a function of frequency (center of slot
is 1.98 em from the center of the waveguide). (From the work of J. W. Dodds and W, H.

Watson by permission of the National Research Council of Canada.)
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because the dumbbell areas are drilled rather than cut by a milling
machine. Another technique for shortening the resonant length is to
place a thin sheet of dielectric over the slot; a sheet of polystyrene of
0.007-in. thickness reduces the resonant length by 1.13 per cent at 10.7
cm. The dielectric sheet also serves as a pressurizing device.

If the conductance and frequency characteristics of each element of a
slotted linear array are known, it is possible to place a given number of
longitudinal slots \,/2 apart so that they are effectively in parallel and
to short-circuit the far end of the guide A, /4from

the last slot so that the admittance in parallel

@=——9) with the last slot is zero. Then if there are n

elements, the relative conductance of each slot

F1o. 9-20.—Dumbbell-shaped must (by suitably choosing x,) be made to equal

slot. to 1/n in order to provide a good match.

Because the slots are placed in the same way as a set of dipoles, end to
end, the mutual impedance of the slots is negligible.

The conductance of a longitudinal slot cut in the broad face of the
guide can be readily determined by measuring the input impedance of
7 slots in parallel because the mutual impedance between slots is negligi-
ble. This is not so when the slots are cut in the narrow face. The effec-
tive conductance of this slot may be found by measuring the additional
conductance produced when one slot is added to an array. In practice
a number of slots, for example 10, are cut and the input admittance
determined. The input admittance is then again determined when addi-
tional slots are cut in sets of, say, 3. Eventually the total susceptance
becomes constant and the conductance linearly proportional to n (if the
susceptance is also proportional to n, the slot depth is adjusted for
resonance). The incremental and ordinary conductances are plotted
in Fig. 9-21 as functions of the angle 6. Both obey very well the law

g = gosin? @

over the measured range. This is in good agreement with Eq. (50) for
small angles 6.

Slots cut in the narrow face have the very useful feature that the
variation of susceptance with frequency is very small compared with
that for slots in other positions in the guide. The variation of admittance
with slot depth is also small as is shown by Fig. 9-22. Thus a change of
+1 mm in depth from the resonant point produces a ehange of only 4 per
cent in conductance and only a small change in susceptance. Because
the depth of cut can always be accurately controlled in a milling
operation, this represents a tolerance which can easily be attained.
Since the angle of the slot to the guide axis can also be accurately “eld,
the system represents a satisfactory array from the constructional point
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of view. A possible objection is that there is an appreciable degree of
unwanted polarization in these beams. The field over the slot has a
longitudinal component proportional to cos 6; the transverse component
of the field does not reverse direction with reversal of the direction of
inclination of the slot and gives rise to an unwanted side lobe at about
40° to the main beam. For tilt angles up to 15°, however, the unwanted
polarization is less than 1 per cent of the radiated power.?
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//f
0.06 /ﬁ /

&_ Ordinary

0.04

0.02 /
g
oo 717

0.006

Conductance G

!
i

0.004

0.002

0 5 10 15 20 25 30 35
Inclination of slot (8), deg
Fia. 9-21.-—Incremental and ordinary conductance as a function of slot inclination.

(From the work of E. W. Guptill and W. H. Watson by permission of the National Research
Council of Canada.)

9-13. Probe-fed Slots.—It was pointed out in Sec. 9-9 that there are
various positions in a guide and various orientations of the slot axis for
which no radiation takes place. It is possible, however, to make any
slot of this type radiate by inserting a suitable probe into the guide adja-
cent to the slot.? The probe introduces the necessary asymmetry in the
field and current distributions for excitation of a field across the slot.
The probe-fed unit has many advantages. In particular the direction
of the field across the slot depends on the side in which the probe is

! Dodds, Guptill, and Watson, op. cil.

tR. E. Clapp, “Probe-fed Slots as Radiating Elements in Linear Arrays,” RL
Report No. 455, Jan. 25, 1944.
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inserted; the phase of a given slot can be shifted 180° by switching the
probe position. An example of this phase reversal is afforded by the
array of slots on rectangular guide illustrated in Fig. 9-23; here the phase
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Fig. 9-22.—Admittance of a 15° inclined slot on narrow edge of rectangular waveguide.
The waveguide dimensions are 1} by 2} in., A = 10.7 ¢m., and the width of the slot is }

in. (From the work of J. W. Dodds, E. W. Guplill, and W. H. Watson by permission of
the National Research Council of Canada.)

reversal of the probe is used to compensate for the 180° phase difference
corresponding to the \,/2 spacing of the slots; the result is an array of
equiphased slot radiators.

Another advantage of the probe-fed unit is that the amount 